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Preface

This book is intended to help students preparing to participate in the USA
Mathematical Olympiad (USAMO) in the hope of representing the United
States at the International Mathematical Olympiad (IMO). The USAMO
is the third stage of the selection process leading to participation in the
IMO. The preceding examinations are the AMC 10 or the AMC 12 (which
replaced the American High School Mathematics Examination) and the
American Invitational Mathematics Examination (AIME). Participation in
the AIME and the USAMO is by invitation only, based on performance in
the preceding exams of the sequence.
The top 12 USAMO students are invited to attend the Mathematical

Olympiad Summer Program (MOSP) regardless of their grade in school.
Additional MOSP invitations are extended to the most promising non-
graduating USAMO students, as potential IMO participants in future years.
During the first days of MOSP, IMO-type exams are given to the top 12
USAMO students with the goal of identifying the six members of the USA
IMO Team. The Team Selection Test (TST) simulates an actual IMO,
consisting of six problems to be solved over two 4 1/2 hour sessions. The
12 equally weighted problems (six on the USAMO and six on the TST)
determine the USA Team.
The Mathematical Olympiad booklets have been published since 1976.

Copies for each year through 1999 can be ordered from the Mathematical
Association of American (MAA) American Mathematics Competitions
(AMC). This publication, Mathematical Olympiads 2000, Mathematical
Olympiads 2001, and Mathematical Olympiads 2002 are published by the
MAA. In addition, various other publications are useful in preparing for the
AMC-AIME-USAMO-IMO sequence (see Chapter 6, Further Reading).
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For more information about the AMC examinations, or to order Mathe-
matical Olympiad booklets from previous years, please write to

Steven Dunbar, MAA Director for K–12 Programs
American Mathematics Competitions
University of Nebraska-Lincoln
1740 Vine Street
Lincoln, NE 68588-0658,

or visit the AMC web site at www.unl.edu/amc.
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Abbreviations
IMO International Mathematical Olympiad
USAMO United States of America Mathematical Olympiad
MOSP Mathematical Olympiad Summer Program

Notation for Numerical Sets and Fields
Z the set of integers
Zn the set of integers modulo n

Notations for Sets, Logic, and Geometry
⇐⇒ if and only if
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A \B A without B (the complement of A with respect

to B)
A ∩B the intersection of sets A and B
A ∪B the union of sets A and B
a ∈ A the element a belongs to the set A
AB the length of segment ABdAB the arc AB−−→
AB the vector AB
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Introduction

Olympiad-style exams consist of several challenging essay-type prob-
lems. Correct and complete solutions often require deep analysis and
careful argument. Olympiad questions can seem impenetrable to the novice,
yet most can be solved by using elementary high school mathematics,
cleverly applied.
Here is some advice for students who attempt the problems that follow:
• Take your time! Very few contestants can solve all of the given
problems within the time limit. Ignore the time limit if you wish.

• Try the “easier” questions first (problems 1 and 4 on each exam).
• Olympiad problems don’t “crack” immediately. Be patient. Try differ-
ent approaches. Experiment with simple cases. In some cases, working
backward from the desired result is helpful.

• If you get stumped, glance at the Hints section. Sometimes a problem
requires an unusual idea or an exotic technique that might be explained
in this section.

• Even if you can solve a problem, read the hints and solutions. They
may contain some ideas that did not occur in your solution, and may
discuss strategic and tactical approaches that can be used elsewhere.

• The formal solutions are models of elegant presentation that you should
emulate, but they often obscure the torturous process of investigation,
false starts, inspiration and attention to detail that led to them. When
you read the formal solutions, try to reconstruct the thinking that went
into them. Ask yourself “What were the key ideas?” “How can I apply
these ideas further?”

• Many of the problems are presented together with a collection of
remarkable solutions developed by the examination committees, con-

xv
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testants, and experts, during or after the contests. For each problem
with multiple solutions, some common crucial results are presented
at the beginning of these solutions. You are encouraged to either try
to prove those results on your own or to independently complete the
solution to the problem based on these given results.

• Go back to the original problem later and see if you can solve it in a
different way.

• All terms in boldface are defined in the Glossary. Use the glossary
and the reading list to further your mathematical education.

• Meaningful problem solving takes practice. Don’t get discouraged if
you have trouble at first. For additional practice, use prior years’ exams
or the books on the reading list.



1
The Problems

1 USAMO
32nd United States of America Mathematical Olympiad

Day I 12:30 PM – 5 PM EDT

April 29, 2003

1. Prove that for every positive integer n there exists an n-digit number
divisible by 5n all of whose digits are odd.

2. A convex polygon P in the plane is dissected into smaller convex
polygons by drawing all of its diagonals. The lengths of all sides and
all diagonals of the polygon P are rational numbers. Prove that the
lengths of all sides of all polygons in the dissection are also rational
numbers.

3. Let n 6= 0. For every sequence of integers
a = a0, a1, a2, . . . , an

satisfying 0 ≤ ai ≤ i, for i = 0, . . . , n, define another sequence
t(a) = t(a)0, t(a)1, t(a)2, . . . , t(a)n

by setting t(a)i to be the number of terms in the sequence a that
precede the term ai and are different from ai. Show that, starting
from any sequence a as above, fewer than n applications of the
transformation t lead to a sequence b such that t(b) = b.

1
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32nd United States of America Mathematical Olympiad

Day II 12:30 PM – 5:00 PM EDT

April 30, 2003

4. Let ABC be a triangle. A circle passing through A and B intersects
segments AC and BC at D and E, respectively. Rays BA and ED
intersect at F while lines BD and CF intersect at M . Prove that
MF =MC if and only if MB ·MD =MC2.

5. Let a, b, c be positive real numbers. Prove that

(2a+ b+ c)2

2a2 + (b+ c)2
+
(2b+ c+ a)2

2b2 + (c+ a)2
+
(2c+ a+ b)2

2c2 + (a+ b)2
≤ 8.

6. At the vertices of a regular hexagon are written six nonnegative
integers whose sum is 2003. Bert is allowed to make moves of the
following form: he may pick a vertex and replace the number written
there by the absolute value of the difference between the numbers
written at the two neighboring vertices. Prove that Bert can make a
sequence of moves, after which the number 0 appears at all six vertices.
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2 Team Selection Test
44th IMO Team Selection Test

Lincoln, Nebraska

Day I 1:00 PM – 5:30 PM

June 20, 2003

1. For a pair of integers a and b, with 0 < a < b < 1000, the set
S ⊆ {1, 2, . . . , 2003} is called a skipping set for (a, b) if for any
pair of elements s1, s2 ∈ S, |s1 − s2| 6∈ {a, b}. Let f(a, b) be the
maximum size of a skipping set for (a, b). Determine the maximum
and minimum values of f .

2. Let ABC be a triangle and let P be a point in its interior. Lines
PA, PB, and PC intersect sides BC, CA, and AB at D, E, and F ,
respectively. Prove that

[PAF ] + [PBD] + [PCE] =
1

2
[ABC]

if and only if P lies on at least one of the medians of triangle ABC.
(Here [XY Z] denotes the area of triangle XY Z.)

3. Find all ordered triples of primes (p, q, r) such that

p | qr + 1, q | rp + 1, r | pq + 1.
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44th IMO Team Selection Test

Lincoln, Nebraska

Day II 8:30 AM – 1:00 PM

June 21, 2003

4. Let N denote the set of positive integers. Find all functions f : N→ N
such that

f(m+ n)f(m− n) = f(m2)

for all m,n ∈ N.
5. Let a, b, c be real numbers in the interval (0, π2 ). Prove that

sin a sin(a− b) sin(a− c)
sin(b+ c)

+
sin b sin(b− c) sin(b− a)

sin(c+ a)

+
sin c sin(c− a) sin(c− b)

sin(a+ b)
≥ 0.

6. Let AH1, BH2, and CH3 be the altitudes of an acute scalene triangle
ABC. The incircle of triangle ABC is tangent to BC,CA, and AB
at T1, T2, and T3, respectively. For k = 1, 2, 3, let Pi be the point on
line HiHi+1 (where H4 = H1) such that HiTiPi is an acute isosceles
triangle with HiTi = HiPi. Prove that the circumcircles of triangles
T1P1T2, T2P2T3, T3P3T1 pass through a common point.
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3 IMO
44th International Mathematical Olympiad

Tokyo, Japan

Day I 9 AM – 1:30 PM

July 13, 2003

1. Let A be a 101-element subset of the set S = {1, 2, . . . , 1000000}.
Prove that there exist numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x+ tj | x ∈ A} j = 1, 2, . . . , 100

are pairwise disjoint.

2. Determine all pairs of positive integers (a, b) such that

a2

2ab2 − b3 + 1
is a positive integer.

3. A convex hexagon is given in which any two opposite sides have
the following property: the distance between their midpoints is

√
3/2

times the sum of their lengths. Prove that all the angles of the hexagon
are equal.
(A convex ABCDEF has three pairs of opposite sides: AB and

DE, BC and EF , CD and FA.)
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44th International Mathematical Olympiad

Tokyo, Japan

Day II 9 AM – 1:30 PM

July 14, 2003

4. Let ABCD be a convex quadrilateral. Let P,Q and R be the feet of
perpendiculars from D to lines BC,CA and AB, respectively. Show
that PQ = QR if and only if the bisectors of angles ABC and ADC
meet on segment AC.

5. Let n be a positive integer and x1, x2, . . . , xn be real numbers with
x1 ≤ x2 ≤ · · · ≤ xn.
(a) Prove that nX

i=1

nX
j=1

|xi − xj |
2 ≤ 2(n2 − 1)

3

nX
i=1

nX
j=1

(xi − xj)2.

(b) Show that the equality holds if and only if x1, x2, . . . , xn form
an arithmetic sequence.

6. Let p be a prime number. Prove that there exists a prime number q
such that for every integer n, the number np− p is not divisible by q.



2
Hints

1 USAMO
1. Try small cases, and build up this number one digit a time. This
number is unique. We did not ask for the uniqueness in the statement
in order to not hint to the approach in the Third Solution.

2. Reduce the problem to a quadrilateral with lots of angles with rational
cosine values.

3. If the value of a term stays the same for one step, it becomes stable.

4. Let XY Z be a triangle with M the midpoint of side Y Z. Point P
lies on segment XM . Lines Y P and XZ meet at Q, ZP and XY at
R. Then RQ k Y Z.

5. It suffices to prove the desired result by assuming, additionally, that
a+ b+ c = 3.

6. Controlling the maximum of the six numbers is not enough.

7
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2 Team Selection Test
1. The extremes can be obtained by different approaches. One requires
the greedy algorithm, another applies congruence theory.

2. Apply the ingredients that prove Ceva’s Theorem to convert this into
an algebra problem.

3. Prove that one of the primes is 2.

4. Play with the given relation and compute many values of the function.

5. Reduce this to Schur’s Inequality.

6. The common point is the orthocenter of triangle T1T2T3.
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3 IMO
1. The greedy algorithm works!

2. Assume that a2/(2ab2−b3+1) = k, or, a2 = 2ab2k−b3k+k, where
k is a positive integer. Consider the quadratic equation x2 − 2b2kx+
(b3 − 1)k = 0 for fixed positive integers b and k.

3. View the given conditions as equality cases of some geometric in-
equalities and consider the angles formed by three major diagonals.

4. Apply the Extended Law of Sines.

5. This is a clear-cut application of Cauchy–Schwarz Inequality.

6. The prime q is a divisor of pp − 1.





3
Formal Solutions

1 USAMO
1. Prove that for every positive integer n there exists an n-digit number
divisible by 5n all of whose digits are odd.

First Solution. We proceed by induction. The property is clearly true for
n = 1. Assume that N = a1a2 . . . an is divisible by 5n and has only odd
digits. Consider the numbers

N1 = 1a1a2 . . . an = 1 · 10n + 5nM = 5n(1 · 2n +M),
N2 = 3a1a2 . . . an = 3 · 10n + 5nM = 5n(3 · 2n +M),
N3 = 5a1a2 . . . an = 5 · 10n + 5nM = 5n(5 · 2n +M),
N4 = 7a1a2 . . . an = 7 · 10n + 5nM = 5n(7 · 2n +M),
N5 = 9a1a2 . . . an = 9 · 10n + 5nM = 5n(9 · 2n +M).

The numbers 1 · 2n +M, 3 · 2n +M, 5 · 2n +M, 7 · 2n +M, 9 · 2n +M
give distinct remainders when divided by 5. Otherwise the difference of
some two of them would be a multiple of 5, which is impossible, because
neither 2n is a multiple of 5, nor is the difference of any two of the
numbers 1, 3, 5, 7, 9. It follows that one of the numbersN1, N2, N3, N4, N5
is divisible by 5n · 5, and the induction is complete.

Second Solution. For an m digit number a, where m ≥ n, let `(a)
denote the m − n leftmost digits of a. (That is, we consider `(a) as an
(m− n)-digit number.) It is clear that we can choose a large odd number
k such that a0 = 5n ·k has at least n digits. Assume that a0 has m0 digits,

11
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where m0 ≥ n. Note that the a0 is an odd multiple of 5. Hence the unit
digit of a0 is 5.
If the n rightmost digits of a0 are all odd, then the number b0 =

a0 − `(a0) · 10n satisfies the conditions of the problem, because b0 has
only odd digits (the same as those n leftmost digits of a0) and that b0 is
the difference of two multiples of 5n.
If there is an even digit among the n rightmost digits of a0, assume that

i1 is the smallest positive integer such that the i1th rightmost digit of a0
is even. Then number a1 = a0 + 5n · 10i1−1 is a multiple of 5n with at
least n digits. The (i− 1)th rightmost digit is the same as that of a0 and
the i1th rightmost digit of a1 is odd. If the n rightmost digits of a1 are all
odd, then b1 = a1 − `(a1) · 10n satisfies the conditions of the problem. If
there is an even digit among the n rightmost digits of a1, assume that i2
is the smallest positive integer such that the i2th rightmost digit of a1 is
even. Then i2 > i1. Set a2 = a1 + 5n · 10i2−1. We can repeat the above
process of checking the rightmost digits of a2 and eliminate the rightmost
even digits of a2, if there is such a digit among the n rightmost digits of
a2. This process can be repeated for at most n− 1 times because the unit
digit of a0 is 5. Thus, we can obtain a number ak, for some nonnegative
integer k, such that ak is a multiple of 5n with its n rightmost digits all
odd. Then bk = ak − `(ak) · 10n is a number that satisfies the conditions
of the problem.

Third Solution. Consider all the nonnegative multiples of 5n that have no
more than n digits. There are 2n such multiples, namely, m0 = 0,m1 =

5n,m2 = 2 · 5n, . . . ,m2n−1 = (2n − 1)5n. For each mi, we define an
n-digit binary string s(mi). If mi is a ki-digit number, the leftmost n−ki
digits of s(mi) are all 0’s, and the jth digit, 1 ≤ j ≤ ki, of s(mi) is 1 (or 0)
if the jth rightmost digit of mi is odd (or even). (For example, for n = 4,
m0 = 0, m1 = 625, m2 = 1250, and s(m0) = 0000, s(m1) = 0001,
s(m2) = 1010.) There are 2n n-digit binary strings. It suffices to show
that s is one-to-one, that is s(mi) 6= s(mj) for i 6= j. Because then there
must be a mi with s(mi) being a string of n 1’s, that is, mi has n digits
and all of them are odd.
We write mi and mj in binary system. Then there is a smallest positive

integer k such that the kth rightmost digit in the binary representations of
mi and mj are different. Without loss of generality, we assume that those
kth digits for mi and mj are 1 and 0, respectively. Then mi = si+2

k+ t

andmj = sj+t, where si, sj , t are positive integers such that 2k+1 divides
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both si and sj and that 0 ≤ t ≤ 2k − 1. Note that adding 2k · 5n to t · 5n
will change the parity of the (k + 1)th rightmost digit of t · 5n while not
affect the k rightmost digits of t · 5n. Note also that adding si · 5n (or
sj · 5n) to (2k + t) · 5n (or t · 5n) will not affect the last k + 1 digits
of (2k + t) · 5n (or t · 5n). Hence the (k + 1)th rightmost digits in the
decimal representations of mi ·5n and mj ·5n have different parities. Thus
s(mi) 6= s(mj), as desired.

2. A convex polygon P in the plane is dissected into smaller convex
polygons by drawing all of its diagonals. The lengths of all sides and
all diagonals of the polygon P are rational numbers. Prove that the
lengths of all sides of all polygons in the dissection are also rational
numbers.

Solution. Let P = A1A2 . . . An, where n is an integer with n ≥ 3. The
problem is trivial for n = 3 because there are no diagonals and thus no
dissections. We assume that n ≥ 4. Our proof is based on the following
Lemma.
Lemma Let ABCD be a convex quadrilateral such that all its sides

and diagonals have rational lengths. If segments AC and BD meet at P ,
then segments AP , BP , CP , DP all have rational lengths.

At

Ai Aj

CI

As

It is clear by the Lemma that the desired result holds when P is a convex
quadrilateral. Let AiAj (1 ≤ i < j ≤ n) be a diagonal of P . Assume that
C1, C2, . . . , Cm are the consecutive division points on diagonal AiAj
(where point C1 is the closest to vertex Ai and Cm is the closest to
Aj). Then the segments C`C`+1, 1 ≤ ` ≤ m − 1, are the sides of all
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polygons in the dissection. Let C` be the point where diagonal AiAj meets
diagonal AsAt. Then quadrilateral AiAsAjAt satisfies the conditions of
the Lemma. Consequently, segments AiC` and C`Aj have rational lengths.
Therefore, segments AiC1, AiC2, . . . , AjCm all have rational lengths.
Thus, C`C`+1 = AC`+1 − AC` is rational. Because i, j, ` are arbitrarily
chosen, we proved that all sides of all polygons in the dissection are also
rational numbers.
Now we present two proofs of the Lemma to finish our proof.

• First approach We show only that segment AP is rational, the proof
for the others being similar. Introduce Cartesian coordinates with A =
(0, 0) and C = (c, 0). Put B = (a, b) and D = (d, e). Then by
hypothesis, the numbers

AB =
p
a2 + b2, AC = c, AD =

p
d2 + e2,

BC =
p
(a− c)2 + b2, BD =

p
(a− d)2 + (b− e)2,

CD =
p
(d− c)2 + e2,

are rational. In particular,

BC2 −AB2 −AC2 = (a− c)2 + b2 − (a2 + b2)− c2 = −2ac
is rational. Because c 6= 0, a is rational. Likewise, d is rational.

B a, b( )

P
C c,( 0)

D d, e( )

A ,(0 0)

Now we have that b2 = AB2 − a2, e2 = AD2 − d2, and (b− e)2 =
BD2 − (a − d)2 are rational, and so that 2be = b2 + e2 − (b − e)2 is
rational. Because quadrilateral ABCD is convex, b and e are nonzero
and have opposite sign. Hence b/e = 2be/2b2 is rational.



Formal Solutions 15

We now calculate

P =

µ
bd− ae
b− e , 0

¶
,

so

AP =
b
e · d− a
b
e − 1

is rational.

• Second approach To prove the Lemma, we set ∠DAP = A1 and
∠BAP = A2. Applying the Law of Cosines to triangles ADC, ABC,
ABD shows that angles A1, A2, A1+A2 all have rational cosine values.
By the Addition formula, we have

sinA1 sinA2 = cosA1 cosA2 − cos(A1 +A2),

implying that sinA1 sinA2 is rational.
Thus

sinA2
sinA1

=
sinA2 sinA1

sin2A1
=
sinA2 sinA1
1− cos2A1

is rational.

A1

P

D

C

B

A
A2

Note that the ratio between the areas of triangles ADP and ABP is
equal to PD

BP . Therefore

BP

PD
=
[ABP ]

[ADP ]
=

1
2AB ·AP · sinA2
1
2AD ·AP · sinA1

=
AB

AD
· sinA2
sinA1

,
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implying that PDBP is rational. Because BP + PD = BD is rational,
both BP and PD are rational. Similarly, AP and PC are rational,
proving the Lemma.

3. Let n 6= 0. For every sequence of integers
a = a0, a1, a2, . . . , an

satisfying 0 ≤ ai ≤ i, for i = 0, . . . , n, define another sequence
t(a) = t(a)0, t(a)1, t(a)2, . . . , t(a)n

by setting t(a)i to be the number of terms in the sequence a that
precede the term ai and are different from ai. Show that, starting
from any sequence a as above, fewer than n applications of the
transformation t lead to a sequence b such that t(b) = b.

First Solution. Note first that the transformed sequence t(a) also satisfies
the inequalities 0 ≤ t(a)i ≤ i, for i = 0, . . . , n. Call any integer sequence
that satisfies these inequalities an index bounded sequence.
We prove now that that ai ≤ t(a)i, for i = 0, . . . , n. Indeed, this is

clear if ai = 0. Otherwise, let x = ai > 0 and y = t(a)i. None of the first
x consecutive terms a0, a1, . . . , ax−1 is greater than x− 1, so they are all
different from x and precede x (see the diagram below). Thus y ≥ x, that
is, ai ≤ t(a)i, for i = 0, . . . , n.

0 1 . . . x− 1 . . . i

a a0 a1 . . . ax−1 . . . x

t(a) t(a)0 t(a)1 . . . t(a)x−1 . . . y

This already shows that the sequences stabilize after finitely many
applications of the transformation t, because the value of the index i
term in index bounded sequences cannot exceed i. Next we prove that
if ai = t(a)i, for some i = 0, . . . , n, then no further applications of t will
ever change the index i term. We consider two cases.

• In this case, we assume that ai = t(a)i = 0. This means that no term
on the left of ai is different from 0, that is, they are all 0. Therefore
the first i terms in t(a) will also be 0 and this repeats (see the diagram
below).

0 1 . . . i

a 0 0 . . . 0

t(a) 0 0 . . . 0
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• In this case, we assume that ai = t(a)i = x > 0. The first x terms are
all different from x. Because t(a)i = x, the terms ax, ax+1, . . . , ai−1
must then all be equal to x. Consequently, t(a)j = x for j = x, . . . , i−1
and further applications of t cannot change the index i term (see the
diagram below).

0 1 . . . x− 1 x x+ 1 . . . i

a a0 a1 . . . ax−1 x x . . . x

t(a) t(a)0 t(a)1 . . . t(a)x−1 x x . . . x

For 0 ≤ i ≤ n, the index i entry satisfies the following properties:
(i) it takes integer values; (ii) it is bounded above by i; (iii) its value
does not decrease under transformation t; and (iv) once it stabilizes under
transformation t, it never changes again. This shows that no more than n
applications of t lead to a sequence that is stable under the transformation
t.
Finally, we need to show that no more than n − 1 applications of t is

needed to obtain a fixed sequence from an initial n+1-term index bounded
sequence a = (a0, a1, . . . , an). We induct on n.
For n = 1, the two possible index bounded sequences (a0, a1) = (0, 0)

and (a0, a1) = (0, 1) are already fixed by t so we need zero applications
of t.
Assume that any index bounded sequence (a0, a1, . . . , an) reach a fixed

sequence after no more than n − 1 applications of t. Consider an index
bounded sequence a = (a0, a1, . . . , an+1). It suffices to show that a will
be stabilized in no more than n applications of t. We approach indirectly
by assuming on the contrary that n + 1 applications of transformations
are needed. This can happen only if an+1 = 0 and each application of
t increased the index n + 1 term by exactly 1. Under transformation
t, the resulting value of index i term will not be effected by index j
term for i < j. Hence by the induction hypothesis, the subsequence
a0 = (a0, a1, . . . , an) will be stabilized in no more than n−1 applications
of t. Because index n term is stabilized at value x ≤ n after no more than
min{x, n−1} applications of t and index n+1 term obtains value x after
exactly x applications of t under our current assumptions. We conclude
that the index n+1 term would become equal to the index n term after no
more than n − 1 applications of t. However, once two consecutive terms
in a sequence are equal they stay equal and stabilize together. Because the
index n term needs no more than n− 1 transformations to be stabilized, a
can be stabilized in no more than n−1 applications of t, which contradicts
our assumption of n + 1 applications needed. Thus our assumption was
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wrong and we need at most n applications of transformation t to stabilize
an (n + 1)-term index bounded sequence. This completes our inductive
proof.

Note. There are two notable variations proving the last step.
• First variation The key case to rule out is ti(a)n = i for i = 0, . . . , n.
If an = 0 and t(a)n = 1, then a has only one nonzero term. If it is
a1, then t(a) = 0, 1, 1, . . . , 1 and t(t(a)) = t(a), so t(t(a))n 6= 2;
if it is ai for i > 1, then t(a) = 0, . . . , 0, i, 1, . . . , 1 and t(t(a)) =
0, . . . , 0, i, i + 1, . . . , i + 1 and t(t(a))n 6= 2. That’s a contradiction
either way. (Actually we didn’t need to check the first case separately
except for n = 2; if an = an−1 = 0, they stay together and so get fixed
at the same step.)

• Second variation Let bn−1 be the terminal value of an−1. Then an−1
gets there at least as soon as an does (since an only rises one each time,
whereas an−1 rises by at least one until reaching bn−1 and then stops,
and furthermore an−1 ≥ 0 = an to begin with), and when an does
reach that point, it is equal to an−1. (Kiran Kedlaya, one of the graders
of this problem, likes to call this a “tortoise and hare” argument—the
hare an−1 gets a head start but gets lazy and stops, so the tortoise an
will catch him eventually.)

Second Solution. We prove that for n ≥ 2, the claim holds without
the initial condition 0 ≤ ai ≤ i. (Of course this does not prove anything
stronger, but it’s convenient.) We do this by induction on n, the case n = 2
being easy to check by hand as in the first solution.
Note that if c = (c0, . . . , cn) is a sequence in the image of t, and d is

the sequence (c1, . . . , cn), then the following two statements are true:
(a) If e is the sequence obtained from d by subtracting 1 from each nonzero

term, then t(d) = t(e). (If there are no zero terms in d, then subtracting
1 clearly has no effect. If there is a zero term in d, it must occur at
the beginning, and then every nonzero term is at least 2.)

(b) One can compute t(c) by applying t to the sequence c1, . . . , cn, adding
1 to each nonzero term, and putting a zero in front.

The recipe of (b) works for computing ti(c) for any i, by (a) and induction
on i.
We now apply the induction hypothesis to t(a)1, . . . , t(a)n to see that

it stabilizes after n − 2 more applications of t; by the recipe above, that
means a stabilizes after n− 1 applications of t.



Formal Solutions 19

Note. A variation of the above approach is the following. Instead of
pulling off one zero, pull off all initial zeroes of a0, . . . , an. (Or rather,
pull off all terms equal to the initial term, whatever it is.) Say there are
k + 1 of them (clearly k ≤ n); after min{k, 2} applications of t, there
will be k+ 1 initial zeroes and all remaining terms are at least k. So now
max{1, n − k − 2} applications of t will straighten out the end, for a
total of min{k, 2}+max{1, n− k− 2}. A little case analysis shows that
this is good enough: if k + 1 ≤ n − 1, then this sum is at most n − 1
except maybe if 3 > n− 1, i.e., n ≤ 3, which can be checked by hand. If
k + 1 > n− 1 and we assume n ≥ 4, then k ≥ n− 1 ≥ 3, so the sum is
2 +max{1, n− k − 2} ≤ max{3, n− k} ≤ n− 1.

4. Let ABC be a triangle. A circle passing through A and B intersects
segments AC and BC at D and E, respectively. Rays BA and ED
intersect at F while lines BD and CF intersect at M . Prove that
MF =MC if and only if MB ·MD =MC2.

First Solution. Extend segment DM through M to G such that FG k
CD.

G

M

F

E

D

C

B

A

ThenMF =MC if and only if quadrilateral CDFG is a parallelogram,
or, FD k CG. Hence MC =MF if and only if ∠GCD = ∠FDA, that
is, ∠FDA+ ∠CGF = 180◦.
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Because quadrilateral ABED is cyclic, ∠FDA = ∠ABE. It follows
that MC =MF if and only if

180◦ = ∠FDA+ ∠CGF = ∠ABE + ∠CGF,

that is, quadrilateral CBFG is cyclic, which is equivalent to

∠CBM = ∠CBG = ∠CFG = ∠DCF = ∠DCM.

Because ∠DMC = ∠CMB, ∠CBM = ∠DCM if and only if triangles
BCM and CDM are similar, that is

CM

BM
=
DM

CM
,

or MB ·MD =MC2.

Second Solution.

A

B

C

D

E

F

M

We first assume that MB ·MD = MC2. Because MC
MD = MB

MC and
∠CMD = ∠BMC, triangles CMD and BMC are similar. Conse-
quently, ∠MCD = ∠MBC. Because quadrilateral ABED is cyclic,
∠DAE = ∠DBE. Hence

∠FCA = ∠MCD = ∠MBC = ∠DBE = ∠DAE = ∠CAE,
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implying that AE k CF , and so ∠AEF = ∠CFE. Because quadrilateral
ABED is cyclic, ∠ABD = ∠AED. Hence

∠FBM = ∠ABD = ∠AED = ∠AEF = ∠CFE = ∠MFD.

Because ∠FBM = ∠DFM and ∠FMB = ∠DMF , triangles BFM
and FDM are similar. Consequently, FM

DM = BM
FM , or FM

2 = BM ·
DM = CM2. Therefore MC2 =MB ·MD implies MC =MF .
Now we assume that MC = MF . Applying Ceva’s Theorem to

triangle BCF and cevians BM , CA, FE gives

BA

AF
· FM
MC

· CE
EB

= 1,

implying that BA
AF = BE

EC , so AE k CF . Thus, ∠DCM = ∠DAE.
Because quadrilateral ABED is cyclic, ∠DAE = ∠DBE. Hence

∠DCM = ∠DAE = ∠DBE = ∠CBM.

Because ∠CBM = ∠DCM and ∠CMB = ∠DMC, triangles BCM
and CDM are similar. Consequently, CMDM = BM

CM , or CM
2 = BM ·DM .

Combining the above, we conclude that MF = MC if and only if
MB ·MD =MC2.

5. Let a, b, c be positive real numbers. Prove that

(2a+ b+ c)2

2a2 + (b+ c)2
+
(2b+ c+ a)2

2b2 + (c+ a)2
+
(2c+ a+ b)2

2c2 + (a+ b)2
≤ 8.

First Solution. (Based on work by Matthew Tang and Anders Kaseorg)
By multiplying a, b, and c by a suitable factor, we reduce the problem to
the case when a+ b+ c = 3. The desired inequality reads

(a+ 3)2

2a2 + (3− a)2 +
(b+ 3)2

2b2 + (3− b)2 +
(c+ 3)2

2c2 + (3− c)2 ≤ 8.

Set

f(x) =
(x+ 3)2

2x2 + (3− x)2
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It suffices to prove that f(a) + f(b) + f(c) ≤ 8. Note that

f(x) =
x2 + 6x+ 9

3(x2 − 2x+ 3) =
1

3
· x

2 + 6x+ 9

x2 − 2x+ 3

=
1

3

µ
1 +

8x+ 6

x2 − 2x+ 3
¶

=
1

3

µ
1 +

8x+ 6

(x− 1)2 + 2
¶
≤ 1
3

µ
1 +

8x+ 6

2

¶
=
1

3
(4x+ 4).

Hence,

f(a) + f(b) + f(c) ≤ 1
3
(4a+ 4 + 4b+ 4 + 4c+ 4) = 8,

as desired, with equality if and only if a = b = c.

Second Solution. (By Liang Qin) Setting x = a+ b, y = b+ c, z = c+ a
gives 2a+ b+ c = x+z, hence 2a = x+z−y and their analogous forms.
The desired inequality becomes

2(x+ z)2

(x+ z − y)2 + 2y2 +
2(z + y)2

(z + y − x)2 + 2x2

+
2(y + x)2

(y + x− z)2 + 2z2 ≤ 8.

Because 2(s2 + t2) ≥ (s + t)2 for all real numbers s and t, we have
2(x+ z − y)2 + 2y2 ≥ (x+ z − y + y)2 = (x+ z)2. Hence

2(x+ z)2

(x+ z − y)2 + 2y2 =
4(x+ z)2

2(x+ z − y)2 + 4y2 ≤
4(x+ z)2

(x+ z)2 + 2y2

=
4

1 + 2 · y2

(x+z)2

≤ 4

1 + 2 · y2

2(x2+z2)

=
4(x2 + z2)

x2 + y2 + z2
.

It is not difficult to see that the desired result follows from summing up
the above inequality and its analogous forms.

Third Solution. (By Richard Stong) Note that

(2x+ y)2 + 2(x− y)2 = 4x2 + 4xy + y2 + 2x2 − 4xy + 2y2

= 3(2x2 + y2).
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Setting x = a and y = b+ c yields

(2a+ b+ c)2 + 2(a− b− c)2 = 3(2a2 + (b+ c)2).
Thus, we have

(2a+ b+ c)2

2a2 + (b+ c)2
=
3(2a2 + (b+ c)2)− 2(a− b− c)2

2a2 + (b+ c)2

= 3− 2(a− b− c)2
2a2 + (b+ c)2

.

and its analogous forms. Thus, the desired inequality is equivalent to

(a− b− c)2
2a2 + (b+ c)2

+
(b− a− c)2
2b2 + (c+ a)2

+
(c− a− b)2
2c2 + (a+ b)2

≥ 1
2
.

Because (b+ c)2 ≤ 2(b2+ c2), we have 2a2+ (b+ c)2 ≤ 2(a2+ b2+ c2)
and its analogous forms. It suffices to show that

(a− b− c)2
2(a2 + b2 + c2)

+
(b− a− c)2
2(a2 + b2 + c2)

+
(c− a− b)2
2(a2 + b2 + c2)

≥ 1
2
,

or,

(a− b− c)2 + (b− a− c)2 + (c− a− b)2 ≥ a2 + b2 + c2.
Multiplying this out, the left-hand side of the last inequality becomes
3(a2+b2+c2)−2(ab+bc+ca). Therefore the last inequality is equivalent
to 2[a2 + b2 + c2 − (ab+ bc+ ca)] ≥ 0, which is evident because
2[a2 + b2 + c2 − (ab+ bc+ ca)] = (a− b)2 + (b− c)2 + (c− a)2.

Equalities hold if and only if (b+c)2 = 2(b2+c2) and (c+a)2 = 2(c2+a2),
that is, a = b = c.

Fourth Solution. We first convert the inequality into

2a(a+ 2b+ 2c)

2a2 + (b+ c)2
+
2b(b+ 2c+ 2a)

2b2 + (c+ a)2
+
2c(c+ 2a+ 2b)

2c2 + (a+ b)2
≤ 5.

Splitting the 5 among the three terms yields the equivalent formX
cyc

4a2 − 12a(b+ c) + 5(b+ c)2
3[2a2 + (b+ c)2]

≥ 0, (1)

where
P
cyc is the cyclic sum of variables (a, b, c). The numerator of the

term shown factors as (2a− x)(2a− 5x), where x = b+ c. We will show
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that
(2a− x)(2a− 5x)
3(2a2 + x2)

≥ −4(2a− x)
3(a+ x)

. (2)

Indeed, (2) is equivalent to

(2a− x)[(2a− 5x)(a+ x) + 4(2a2 + x2)] ≥ 0,
which reduces to

(2a− x)(10a2 − 3ax− x2) = (2a− x)2(5a+ x) ≥ 0,
which is evident. We proved that

4a2 − 12a(b+ c) + 5(b+ c)2
3[2a2 + (b+ c)2]

≥ −4(2a− b− c)
3(a+ b+ c)

,

hence (1) follows. Equality holds if and only if 2a = b + c, 2b = c + a,
2c = a+ b, i.e., when a = b = c.

Fifth Solution. Given a function f of n variables, we define the symmetric
sum X

sym

f(x1, . . . , xn) =
X
σ

f(xσ(1), . . . , xσ(n))

where σ runs over all permutations of 1, . . . , n (for a total of n! terms).
For example, if n = 3, and we write x, y, z for x1, x2, x3,X

sym

x3 = 2x3 + 2y3 + 2z3X
sym

x2y = x2y + y2z + z2x+ x2z + y2x+ z2yX
sym

xyz = 6xyz.

We combine the terms in the desired inequality over a common denominator
and use symmetric sum notation to simplify the algebra. The numerator of
the difference between the two sides is

2
X
sym

4a6 + 4a5b+ a4b2 + 5a4bc+ 5a3b3 − 26a3b2c+ 7a2b2c2, (3)

and it suffices to show the the expression in (3) is always greater or equal to
0. By theWeighted AM-GM Inequality, we have 4a6+b6+c6 ≥ 6a4bc,
3a5b+3a5c+b5a+c5a ≥ 8a4bc, and their analogous forms. Adding those



Formal Solutions 25

inequalities yieldsX
sym

6a6 ≥
X
sym

6a4bc and
X
sym

8a5b ≥
X
sym

8a4bc.

Consequently, we obtainX
sym

4a6 + 4a5b+ 5a4bc ≥
X
sym

13a4bc. (4)

Again by the AM-GM Inequality, we have a4b2+ b4c2+ c4a2 ≥ 4a2b2c2,
a3b3 + b3c3 + c3a3 ≥ 3a2b2c2, and their analogous forms. Thus,X

sym

a4b2 + 5a3b3 ≥
X
sym

6a2b2c2,

or X
sym

a4b2 + 5a3b3 + 7a2b2c2 ≥
X
sym

13a2b2c2. (5)

Recalling Schur’s Inequality, we have

a3 + b3 + c3 + 3abc− (a2b+ b2c+ c2a+ ab2 + bc2 + ca2)
= a(a− b)(a− c) + b(b− a)(b− c) + c(c− a)(c− b) ≥ 0,

or X
sym

a3 − 2a2b+ abc ≥ 0.

ThusX
sym

13a4bc− 26a3b2c+13a2b2c2 ≥ 13abc
X
sym

a3− 2a2b+abc ≥ 0. (6)

Adding (4), (5), and (6) yields (3).

Note. While the last two methods seem inefficient for this problem, they
hold the keys to proving the following inequality:

(b+ c− a)2
(b+ c)2 + a2

+
(c+ a− b)2
(c+ a)2 + b2

+
(a+ b− c)2
(a+ b)2 + c2

≥ 3
5
,

where a, b, c are positive real numbers.

6. At the vertices of a regular hexagon are written six nonnegative
integers whose sum is 2003. Bert is allowed to make moves of the
following form: he may pick a vertex and replace the number written
there by the absolute value of the difference between the numbers
written at the two neighboring vertices. Prove that Bert can make a
sequence of moves, after which the number 0 appears at all six vertices.
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Note. Let
A
B

F

C

E
D

denote a position, where A,B,C,D,E, F denote the numbers written on
the vertices of the hexagon. We write

A
B

F

C

E
D (mod 2)

if we consider the numbers written modulo 2.
This is the hardest problem on the test. Many students thought they

had made considerable progress. Indeed, there were only a handful of
contestants who were able to find some algorithm without major flaws.
Richard Stong, one of the graders of this problem, wrote the following
summary.
There is an obvious approach one can take to reducing this problem,

namely the greedy algorithm: reducing the largest value. As is often the
case, this approach is fundamentally flawed. If the initial values are

1
3

n

2

7
5

where n is an integer greater than 7, then the first move following the
greedy algorithm gives

1
3

6

2

7
5.

No set of moves can lead from these values to the all zeroes by a parity
argument. This example also shows that there is no sequence of moves
which always reduces the sum of the six entries and leads to the all
zeroes. A correct solution to the problem requires first choosing some
parity constraint to avoid the

1
1

0

0

1
1 (mod 2)

situation, which is invariant under the operation. Secondly one needs to
find some moves that preserve the chosen constraint and reduce the six
values.

Solution. Define the sum and maximum of a position to be the sum and
maximum of the six numbers at the vertices. We will show that from
any position in which the sum is odd, it is possible to reach the all-zero
position.
Our strategy alternates between two steps:
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(a) from a position with odd sum, move to a position with exactly one
odd number;

(b) from a position with exactly one odd number, move to a position with
odd sum and strictly smaller maximum, or to the all-zero position.

Note that no move will ever increase the maximum, so this strategy
is guaranteed to terminate, because each step of type (b) decreases the
maximum by at least one, and it can only terminate at the all-zero position.
It suffices to show how each step can be carried out.
First, consider a position

A
B

F

C

E
D

with odd sum. Then either A + C + E or B + D + F is odd; assume
without loss of generality that A+ C + E is odd. If exactly one of A, C
and E is odd, say A is odd, we can make the sequence of moves

1
B

F

0

0
D → 1

1

1

0

0
0→ 0

1

1

0

0
0→ 0

1

0

0

0
0 (mod 2),

where a letter or number in boldface represents a move at that vertex, and
moves that do not affect each other have been written as a single move
for brevity. Hence we can reach a position with exactly one odd number.
Similarly, if A, C, E are all odd, then the sequence of moves

1
B

F

1

1
D → 1

0

0

1

1
0→ 1

0

0

0

0
0 (mod 2),

brings us to a position with exactly one odd number. Thus we have shown
how to carry out step (a).
Now assume that we have a position

A
B

F

C

E
D

with A odd and all other numbers even. We want to reach a position with
smaller maximum. LetM be the maximum. There are two cases, depending
on the parity of M .

• In this case, M is even, so one of B, C, D, E, F is the maximum. In
particular, A < M .
We claim after making moves at B, C, D, E, and F in that order,

the sum is odd and the maximum is less than M . Indeed, the following
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sequence

1
0

0

0

0
0→ 1

1

0

0

0
0→ 1

1

0

1

0
0

→ 1
1

0

1

0
1→ 1

1

0

1

1
1→ 1

1

0

1

1
1 (mod 2).

shows how the numbers change in parity with each move. Call this new
position

A0
B0

F 0
C 0

E0
D0.

The sum is odd, since there are five odd numbers. The numbers A0, B0,
C 0,D0, E0 are all less thanM , since they are odd andM is even, and the
maximum can never increase. Also, F 0 = |A0 −E0| ≤ max{A0, E0} <
M . So the maximum has been decreased.

• In this case, M is odd, so M = A and the other numbers are all less
than M .
If C > 0, then we make moves at B, F , A, and F , in that order. The

sequence of positions is

1
0

0

0

0
0→ 1

1

0

0

0
0→ 1

1

1

0

0
0

→ 0
1

1

0

0
0→ 0

1

0

0

0
0 (mod 2).

Call this new position

A0
B0

F 0
C 0

E0
D0.

The sum is odd, since there is exactly one odd number. As before, the
only way the maximum could not decrease is if B0 = A; but this is
impossible, since B0 = |A−C| < A because 0 < C < M = A. Hence
we have reached a position with odd sum and lower maximum.
If E > 0, then we apply a similar argument, interchanging B with

F and C with E.
If C = E = 0, then we can reach the all-zero position by the

following sequence of moves:

A
B

F

0

0
D → A

A
A
0

0
0→ 0

A

A

0

0
0→ 0

0

0

0

0
0.

(Here 0 represents zero, not any even number.)

Hence we have shown how to carry out a step of type (b), proving the
desired result. The problem statement follows since 2003 is odd.
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Note. Observe that from positions of the form

0
1

1

1

1
0 (mod 2) or rotations

it is impossible to reach the all-zero position, because a move at any
vertex leaves the same value modulo 2. Dividing out the greatest common
divisor of the six original numbers does not affect whether we can reach
the all-zero position, so we may assume that the numbers in the original
position are not all even. Then by a more complete analysis in step (a), one
can show from any position not of the above form, it is possible to reach a
position with exactly one odd number, and thus the all-zero position. This
gives a complete characterization of positions from which it is possible to
reach the all-zero position.
There are many ways to carry out the case analysis in this problem; the

one used here is fairly economical. The important idea is the formulation
of a strategy that decreases the maximum value while avoiding the “bad”
positions described above.

Second Solution. (By Richard Stong) We will show that if there is a pair
of opposite vertices with odd sum (which of course is true if the sum of
all the vertices is odd), then we can reduce to a position of all zeros.
Focus on such a pair {a, d} with smallest possible max{a, d}. We will

show we can always reduce this smallest maximum of a pair of opposite
vertices with odd sum or reduce to the all-zero position. Because the
smallest maximum takes nonnegative integer values, we must be able to
achieve the all-zero position.
To see this assume without loss of generality that a ≥ d and consider

an arc (a, x, y, d) of the position

a
x

∗
y

∗ d

Consider updating x and y alternately, starting with x. If max{x, y} > a,
then in at most two updates we reduce max{x, y}. Thus, we can repeat
this alternate updating process and we must eventually reach a point when
max{x, y} ≤ a, and hence this will be true from then on.
Under this alternate updating process, the arc of the hexagon will

eventually enter a unique cycle of length four modulo 2 in at most one
update. Indeed, we have

1
0

∗
0

∗ 0→ 1
1

∗
0

∗ 0→ 1
1

∗
1

∗ 0→ 1
0

∗
1

∗ 0→ 1
0

∗
0

∗ 0 (mod 2)
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and

1
0

∗
0

∗ 0→ 1
0

∗
0

∗ 0 (mod 2); 1
1

∗
0

∗ 0→ 1
1

∗
0

∗ 0 (mod 2)

1
1

∗
1

∗ 0→ 1
1

∗
1

∗ 0 (mod 2); 1
0

∗
1

∗ 0→ 1
0

∗
1

∗ 0 (mod 2),

or

0
0

∗
1

∗ 1→ 0
1

∗
1

∗ 1→ 0
1

∗
0

∗ 1→ 0
0

∗
0

∗ 1→ 0
0

∗
1

∗ 1 (mod 2)

and

0
0

∗
0

∗ 1→ 0
0

∗
0

∗ 1 (mod 2); 0
0

∗
1

∗ 1→ 0
0

∗
1

∗ 1 (mod 2)

0
1

∗
1

∗ 1→ 0
1

∗
0

∗ 1 (mod 2); 0
1

∗
0

∗ 1→ 0
1

∗
0

∗ 1 (mod 2).

Further note that each possible parity for x and y will occur equally often.
Applying this alternate updating process to both arcs (a, b, c, d) and

(a, e, f, d) of

a
b

f

c

e
d,

we can make the other four entries be at most a and control their parity.
Thus we can create a position

a
x1
x5

x2
x4
d

with xi + xi+3 (i = 1, 2) odd and Mi = max{xi, xi+3} ≤ a. In fact,
we can have m = min{M1,M2} < a, as claimed, unless both arcs enter
a cycle modulo 2 where the values congruent to a modulo 2 are always
exactly a. More precisely, because the sum of xi and xi+3 is odd, one of
them is not congruent to a and so has its value strictly less than a. Thus
both arcs must pass through the state (a, a, a, d) (modulo 2, this is either
(0, 0, 0, 1) or (1, 1, 1, 0)) in a cycle of length four. It is easy to check that
for this to happen, d = 0. Therefore, we can achieve the position

a
a

a

a

a
0.

From this position, the sequence of moves

a
a

a

a

a
0→ a

0

0

a

a
0→ 0

0

0

0

0
0

completes the task.
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Third Solution. (By Tiankai Liu) In the beginning, because A+B+C+
D+E+F is odd, either A+C+E or B+D+F is odd; assume without
loss of generality it is the former. Perform the following steps repeatedly.

a. In this case we assume that A, C, E are all nonzero. Suppose without
loss of generality that A ≥ C ≥ E. Perform the sequence of moves

A
B

F

C

E
D → A

(A−C)
(A−E)

C

E
(C −E)

→ (C −E) (A− C)
(A−E)

C

(A−C) (C −E),

which decreases the sum of the numbers in positions A, C, E while
keeping that sum odd.

b. In this case we assume that exactly one among A, C, E is zero.
Assume without loss of generality that A ≥ C > E = 0. Then,
becauseA+C+E is odd, A must be strictly greater than C. Therefore,
−A < A− 2C < A, and the sequence of moves

A
B

F

C

0
D → A

(A−C)
A

C

0
C

→ C
(A− C)
A

|A− 2C|
0

C,

decreases the sum of the numbers in positions A, C, E while keeping
that sum odd.

c. In this case we assume that exactly two among A, C, E are zero.
Assume without loss of generality that A > C = E = 0. Then
perform the sequence of moves

A
B

F

0

0
D → A

A

A

0

0
0→ 0

A

A

0

0
0→ 0

0

0

0

0
0.

By repeatedly applying step (a) as long as it applies, then doing the same
for step (b) if necessary, and finally applying step (c) if necessary,

0
0

0

0

0
0

can eventually be achieved.
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2 Team Selection Test
1. For a pair of integers a and b, with 0 < a < b < 1000, the set
S ⊆ {1, 2, . . . , 2003} is called a skipping set for (a, b) if for any
pair of elements s1, s2 ∈ S, |s1 − s2| 6∈ {a, b}. Let f(a, b) be the
maximum size of a skipping set for (a, b). Determine the maximum
and minimum values of f .

Note. This problem caused unexpected difficulties for students. It requires
two ideas: applying the greedy algorithm to obtain the minimum and
applying the Pigeonhole Principle on congruence classes to obtain the
maximum. Most students were successful in getting one of the two ideas
and obtaining one of the extremal values quickly, but then many of them
failed to switch to the other idea. In turn, their solutions for the second
extremal value were very lengthy and sometimes unsuccessful.

Solution. The maximum and minimum values of f are 1334 and 338,
respectively.

(a) First, we will show that the maximum value of f is 1334. The set
S = {1, 2, . . . , 667} ∪ {1336, 1337, . . . , 2002} is a skipping set for
(a, b) = (667, 668), so f(667, 668) ≥ 1334.
Now we prove that for any 0 < a < b < 1000, f(a, b) ≤ 1334.

Because a 6= b, we can choose d ∈ {a, b} such that d 6= 668. We
assume first that d ≥ 669. Then consider the 2003 − d ≤ 1334 sets
{1, d+1}, {2, d+2}, . . . , {2003−d, 2003}. Each can contain at most
one element of S, so |S| ≤ 1334.
We assume second that d ≤ 667 and that § 2003a ¨

is even, that is,§
2003
a

¨
= 2k for some positive integer k. Then each of the congruence

classes of 1, 2, . . . , 2003 modulo a contains at most 2k elements.
Therefore at most k members of each of these congruence classes
can belong to S. Consequently,

|S| ≤ ka < 1

2

µ
2003

a
+ 1

¶
a =

2003 + a

2

≤ 1335,

implying that |S| ≤ 1334.
Finally, we assume that d ≤ 667 and that

§
2003
a

¨
is odd, that

is,
§
2003
a

¨
= 2k + 1 for some positive integer k. Then, as before,

S can contain at most k elements from each congruence class of
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{1, 2, . . . , 2ka} modulo a. Then
|S| ≤ ka+ (2003− 2ka) = 2003− ka

= 2003−
Ã§

2003
a

¨− 1
2

!
a

≤ 2003−
µ 2003

a − 1
2

¶
a

=
2003 + a

2
≤ 1335.

The last inequality holds if and only if a = 667. But if a = 667, then
2003
a is not an integer, and so the second inequality is strict. Thus,
|S| ≤ 1334. Therefore the maximum value of f is 1334.

(b) We will now show that the minimum value of f is 668. First, we will
show that f(a, b) ≥ 668 by constructing a skipping set S for any (a, b)
with |S| ≥ 668. Note that if we add x to S, then we are not allowed to
add x, x+a, or x+b to S at any later time. Then at each step, let us add
to S the smallest element of {1, 2, . . . , 2003} that is not already in S
and that has not already been disallowed from being in S. Then since
adding this element prevents at most three elements from being added
at any future time, we can always perform this step

§
2003
3

¨
= 668

times. Thus, |S| ≥ 668, so f(a, b) ≥ 668. Now notice that if we let
a = 1, b = 2, then at most one element from each of the 668 sets
{1, 2, 3}, {4, 5, 6}, . . . , {1999, 2000, 2001}, {2002, 2003} can belong
to S. This implies that f(1, 2) = 668, so indeed the minimum value
of f is 668.

2. Let ABC be a triangle and let P be a point in its interior. Lines
PA, PB, and PC intersect sides BC, CA, and AB at D, E, and F ,
respectively. Prove that

[PAF ] + [PBD] + [PCE] =
1

2
[ABC]

if and only if P lies on at least one of the medians of triangle ABC.
(Here [XY Z] denotes the area of triangle XY Z.)

Solution. Let [PAF ] = x, [PBD] = y, [PCE] = z, [PAE] = u,
[PCD] = v, and [PBF ] = w.
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v

w

u

z

y

x

P
F E

D CB

A

Note first that
x

w
=
x+ u+ z

w + y + v
=
u+ z

y + v
=
AF

FB
,

y

v
=
x+ y + w

u+ v + z
=
x+ w

u+ z
=
BD

DC
,

z

u
=
y + z + v

x+ u+ w
=
y + v

x+ w
=
CE

EA
.

Point P lies on one of the medians if and only if

(x− w)(y − v)(z − u) = 0. (∗)
By Ceva’s Theorem, we have

xyz

uvw
=
AF

FB
· BD
DC

· CE
EA

= 1,

or,
xyz = uvw. (1)

Multiplying out xw =
u+z
y+v yields xy+xv = uw+zw. Likewise, uy+yz =

xv + vw and xz + zw = uy + uv. Summing up the last three relations,
we obtain

xy + yz + zx = uv + vw + wu. (2)

Now we are ready to prove the desired result. We first prove the “if”
part by assuming that P lies on one of the medians, say AD. Then
y = v, and so y

v =
x+w
u+z and xyz = uvw become x + w = u + z and

xz = uw, respectively. Then the numbers x,−z and u,−w have the same
sum and the same product. It follows that x = u and z = w. Therefore
x+ y + z = u+ v + w, as desired.
Conversely, we assume that

x+ y + z = u+ v + w. (3)
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From (1), (2), and (3) it follows that x, y, z and u, v, w are roots of the
same degree three polynomial. Hence {x, y, z} = {u, v, w}. If x = w or
y = v or z = u, then the conclusion follows by (∗). If x = u, y = w, and
z = v, then from

x

w
=
u+ z

y + v
=
u+ z − x
y + v − w =

z

v
= 1,

we obtain x = w. Likewise, we have y = v, and so x = y = z = u = v =
w, that is, P is the centroid of triangle ABC and the conclusion follows.
Finally, if x = v, y = u, z = w, then from

x

w
=
x+ u+ z

w + y + v
=
x+ y + z

w + u+ v
= 1,

we obtain x = w. Similarly, y = v and P is again the centroid.

3. Find all ordered triples of primes (p, q, r) such that

p | qr + 1, q | rp + 1, r | pq + 1.

Solution. Answer: (2, 5, 3) and cyclic permutations.
We check that this is a solution:

2 | 126 = 53 + 1, 5 | 10 = 32 + 1, 3 | 33 = 25 + 1.
Now let p, q, r be three primes satisfying the given divisibility relations.

Since q does not divide qr + 1, p 6= q, and similarly q 6= r, r 6= p, so p, q
and r are all distinct. We now prove a lemma.
Lemma. Let p, q, r be distinct primes with p | qr + 1, and p > 2.

Then either 2r | p− 1 or p | q2 − 1.
Proof. Since p | qr + 1, we have

qr ≡ −1 6≡ 1 (mod p), because p > 2,

but
q2r ≡ (−1)2 ≡ 1 (mod p).

Let d be the order of q mod p; then from the above congruences, d divides
2r but not r. Since r is prime, the only possibilities are d = 2 or d = 2r.
If d = 2r, then 2r | p−1 because d | p−1. If d = 2, then q2 ≡ 1 (mod p)
so p | q2 − 1. This proves the lemma.
Now let’s first consider the case where p, q and r are all odd. Since

p | qr + 1, by the lemma either 2r | p− 1 or p | q2 − 1. But 2r | p− 1 is
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impossible because

2r | p− 1 =⇒ p ≡ 1 (mod r) =⇒ 0 ≡ pq + 1 ≡ 2 (mod r)
and r > 2. So we must have p | q2 − 1 = (q − 1)(q + 1). Since p is an
odd prime and q − 1, q + 1 are both even, we must have

p | q − 1
2

or p | q + 1
2
;

either way,
p ≤ q + 1

2
< q.

But then by a similar argument we may conclude q < r, r < p, a
contradiction.
Thus, at least one of p, q, r must equal 2. By a cyclic permutation we

may assume that p = 2. Now r | 2q+1, so by the lemma, either 2q | r−1
or r | 22 − 1. But 2q | r − 1 is impossible as before, because q divides
r2 + 1 = (r2 − 1) + 2 and q > 2. Hence, we must have r | 22 − 1. We
conclude that r = 3, and q | r2 + 1 = 10. Because q 6= p, we must have
q = 5. Hence (2, 5, 3) and its cyclic permutations are the only solutions.

4. Let N denote the set of positive integers. Find all functions f : N→ N
such that

f(m+ n)f(m− n) = f(m2)

for all m,n ∈ N.

Solution. Function f(n) = 1, for all n ∈ N, is the only function satisfying
the conditions of the problem.
Note that

f(1)f(2n− 1) = f(n2) and f(3)f(2n− 1) = f((n+ 1)2)
for n ≥ 3. Thus

f(3)

f(1)
=
f((n+ 1)2)

f(n2)
.

Setting f(3)
f(1) = k yields f(n2) = kn−3f(9) for n ≥ 3. Similarly, for all

h ≥ 1,
f(h+ 2)

f(h)
=
f((m+ 1)2)

f(m2)

for sufficiently large m and is thus also k. Hence f(2h) = kh−1f(2) and
f(2h+ 1) = khf(1).
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But
f(25)

f(9)
=
f(25)

f(23)
· · · f(11)

f(9)
= k8

and
f(25)

f(9)
=
f(25)

f(16)
· f(16)
f(9)

= k2,

so k = 1 and f(16) = f(9). This implies that f(2h+1) = f(1) = f(2) =
f(2j) for all j, h, so f is constant. From the original functional equation
it is then clear that f(n) = 1 for all n ∈ N.

5. Let a, b, c be real numbers in the interval (0, π2 ). Prove that

sin a sin(a− b) sin(a− c)
sin(b+ c)

+
sin b sin(b− c) sin(b− a)

sin(c+ a)

+
sin c sin(c− a) sin(c− b)

sin(a+ b)
≥ 0.

Solution. By the Product-to-sum formulas and the Double-angle for-
mulas, we have

sin(α− β) sin(α+ β) =
1

2
[cos 2β − cos 2α]

= sin2 α− sin2 β.
Hence, we obtain

sin a sin(a− b) sin(a− c) sin(a+ b) sin(a+ c)
= sin c(sin2 a− sin2 b)(sin2 a− sin2 c)

and its analogous forms. Therefore, it suffices to prove that

x(x2 − y2)(x2 − z2) + y(y2 − z2)(y2 − x2) + z(z2 − x2)(z2 − y2) ≥ 0,
where x = sin a, y = sin b, and z = sin c (hence x, y, z > 0). Since the
last inequality is symmetric with respect to x, y, z, we may assume that
x ≥ y ≥ z > 0. It suffices to prove that
x(y2 − x2)(z2 − x2) + z(z2 − x2)(z2 − y2) ≥ y(z2 − y2)(y2 − x2),

which is evident as

x(y2 − x2)(z2 − x2) ≥ 0
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and

z(z2 − x2)(z2 − y2) ≥ z(y2 − x2)(z2 − y2) ≥ y(z2 − y2)(y2 − x2).

Note. The key step of the proof is an instance of Schur’s Inequality with
r = 1

2 .

6. Let AH1, BH2, and CH3 be the altitudes of an acute scalene triangle
ABC. The incircle of triangle ABC is tangent to BC,CA, and AB
at T1, T2, and T3, respectively. For k = 1, 2, 3, let Pi be the point on
line HiHi+1 (where H4 = H1) such that HiTiPi is an acute isosceles
triangle with HiTi = HiPi. Prove that the circumcircles of triangles
T1P1T2, T2P2T3, T3P3T1 pass through a common point.

Note. We present three solutions. The first two are synthetic geometry
approaches based on the following Lemma. The third solution calculates
the exact position of the common point. In these solutions, all angles are
directed modulo 180◦. If reader is not familiar with the knowledge of
directed angles, please refer our proofs with attached Figures. The proofs of
the problem for other configurations can be developed in similar fashions.
Lemma. The circumcenters of triangles T2P2T3, T3P3T1, and T1P1T2
are the incenters of triangles AH2H3, BH3H1, and CH1H2, respectively.
Proof. We prove that the circumcenter of triangle T2P2T3 is the

incenter of triangle AH2H3; the other two are analogous. It suffices to
show that the perpendicular bisectors of T2T3 and T2P2 are the interior
angle bisectors of ∠H3AH2 and ∠AH2H3. For the first pair, notice that

H3

I

C

B

A

P3

T3

T2

T1
P1

P2

H2

H1

O3

O2

O1
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triangle AT2T3 is isosceles with AT2 = AT3 by equal tangents. Also,
because triangle ABC is acute, T2 is on ray AH2 and T3 is on ray AH3.
Therefore, the perpendicular bisector of T2T3 is the same as the interior
angle bisector of ∠T3AT2, which is the same as the interior angle bisector
of ∠H3AH2.
We prove the second pair similarly. Here, triangle H2T2P2 is isosceles

with H2T2 = H2P2 by assumption. Also, P2 is on lineH2H3 and T2 is on
line H2A. Because quadrilateral BH3H2C is cyclic, ∠AH2H3 = ∠B is
acute. Now, ∠T2H2P2 is also acute by assumption, so P2 is on ray H2H3
if and only if T2 is on rayH2A. In other words, ∠T2H2P2 either coincides
with ∠AH2H3 or is the vertical angle opposite it. In either case, we see
that the perpendicular bisector of T2P2 is the same as the interior angle
bisector of ∠T2H2P2, which is the same as the interior angle bisector of
∠AH2H3.
Let ω1,ω2,ω3 denote the circumcircles of triangles T2P2T3, T3P3T1,

T1P1T2, respectively. For i = 1, 2, 3, let Oi be center of ωi. By the Lemma,
O1, O2, O3 are the incenters of triangles AH2H3, BH3H1, CH1H2,
respectively. Let I , ω, and r be the incenter, incircle, and inradius of
triangle ABC, respectively.

First Solution. (By Po-Ru Loh) We begin by showing that points
O3, H2, T2, and O3 lie on a cyclic. We will prove this by establishing
∠O3O1H2 = ∠O3T2C = ∠O3T2H2. To find ∠O3O1H2, observe that
triangles H2AH3 and H2H1C are similar. Indeed, quadrilateral BH3H2C

H3

I

C

B

P3

T3

T2

T1
P1

P2

H2

H1

O3

O2

O1

D

A
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is cyclic so ∠H2H3A = ∠C, and likewise ∠CH1H2 = ∠A. Now, O1
and O3 are corresponding incenters of similar triangles, so it follows that
triangles H2AO1 and H2H1O3 are also similar, and hence are related by
a spiral similarity about H2. Thus,

AH2
H1H2

=
O1H2
O3H2

and

∠AH2H1 = ∠AH2O1 + ∠O1H2H1
= ∠O1H2H1 + ∠H1H2O3 = ∠O1H2O3.

It follows that another spiral similarity about H2 takes triangle H2AH1 to
triangle H2O1O3. Hence ∠O3O1H2 = ∠H1AH2 = 90◦ − ∠C.
We wish to show that ∠O3T2C = 90◦−∠C as well, or in other words,

T2O3 ⊥ BC. To do this, drop the altitude from O3 to BC and let it
intersect BC at D. Triangles ABC and H1H2C are similar as before,
with corresponding incenters I and O3. Furthermore, IT2 and O3D also
correspond. Hence, CT2/T2A = CD/DH1, and so T2D k AH1. Thus,
T2D ⊥ BC, and it follows that T2O3 ⊥ BC.

H3

I

C

B

P3

T3

T2

T1
P1

P2

H2

H1

O3

O2

O1

A

H
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Having shown thatO1H2T2O3 is cyclic, we may now write∠O1T2O3 =
∠O1H2O3. Since triangles H2AO1 and H2H1O3 are related by a spiral
similarity about H2, we have

∠O1H2O3 = ∠AH2H1 = 180◦ − ∠B,

by noting that ABH2H1 is cyclic. Likewise,

∠O2T3O1 = 180◦ − ∠C and ∠O3T1O2 = 180◦ − ∠A,

and so ∠O1T2O3+∠O2T3O1+∠O3T1O2 = 360◦. Therefore, ∠T3O1T2,
∠T1O2T3, and ∠T2O3T1 of hexagon O1T2O3T1O2T3 also sum to 360◦.
Now let H be the intersection of circles ω1 and ω2. Then ∠T2HT3 =
180◦ − 1

2∠T3O1T2 and ∠T3HT1 = 180◦ − 1
2∠T1O2T3. Therefore,

∠T1HT2 = 360◦ − ∠T2HT3 − ∠T3HT1
=
1

2
∠T3O1T2 +

1

2
∠T1O2T3 = 180◦ − 1

2
∠T1O3T2,

and so H lies on the circle ω3 as well. Hence, circles ω1, ω2, and ω3 share
a common point, as wanted.

Note. Readers might be nervous about the configurations, i.e., what if the
hexagon O1T2O3T1O2T3 is not convex? Indeed, it is convex. It suffices to
show that O1, O2, and O3 are inside triangles AT2T3, BT3T1, and CT1T2,
respectively. By symmetry, we only show that O1 is inside AT2T3. Let d
denote the distance from A to line T2T3. Then

d

AI
=

d

AT2
· AT2
AI

= cos2
∠A
2
.

On the other hand, triangles AH2H3 and ABC are similar with ratio
cos∠A. Hence

AO1
AI

= cos∠A = 2 cos2 ∠A
2
− 1 ≤ cos2 ∠A

2
=

d

AI
,

by the Double-angle formulas. We conclude that O1 is inside triangle
AT2T3. Our second proof is based on above arguments.

Second Solution. (By Anders Kaseorg) Note that AH2 = AB cos∠A
and AH3 = AC cos∠A, so triangles AH2H3 and ABC are similar
with ratio cos∠A. Thus, since O1 is the incircle of triangle AH2H3,
AO1 = AI cos∠A. If X1 is the intersection of segments AI and T2T3,
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H3

CB

P3

T3

T2

T1

P1

P2
H2

H1

O3

O2

O1

A

H
I

X

X1

we have ∠IX1T2 = ∠AT2I = 90◦, and so

X1I = T2I cos∠T2IA = AI cos2 ∠T2IA = AI sin2
∠A
2

= AI · 1− cos∠A
2

=
AI −AO1

2
=
O1I

2
.

Hence O1X1 = X1I , so O1 is the reflection of I across line T2T3,
and O1T2 = IT2 = IT3 = O1T3. Therefore, O1T2IT3, and similarly
O2T3IT1 and O3T1IT2, are rhombi with the same side length r, implying
that circles ω1,ω2,ω have the same radius r. We also conclude that
O1T2 = T3I = O2T1 and O1T2 k T3I k O2T1, and so O1O2T1T2 is
a parallelogram. Hence the midpoints of O1T1 and O2T2 (similarly O3T3)
are the same point P , and O1O2O3 is the reflection of T1T2T3 across P .
If H is the reflection of I across P , we have O1H = O2H = O3H = r,
that is, H is a common point of the three circumcircles.

Note. Tony Zhang suggested the following finish. Because O1 is the
reflection of I across line T2T3 and I is the circumcenter of triangle
T1T2T3, ∠T3O1T2 = ∠T2IT3 = 2∠T2T1T3. If H 0 is the orthocenter of
triangle T1T2T3, then

∠T2H 0T3 = 180◦ − ∠T2T1T3 = 180◦ − ∠T3O1T2
2

,

and so H 0 lies on ω1. Similarly, H 0 lies on ω2 and ω3.
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Third Solution. We use directed lengths (along line BC, with C to B as
the positive direction) and directed angles modulo 180◦ in this proof. (For
segments not lying on line BC, we assume its direction as the direction of
its projection on line BC.) We claim that ωi, i = 1, 2, 3, all pass through
H , the orthocenter of triangle T1T2T3. Without loss of generality, it suffices
to prove that T1P1T2H is cyclic. If AB = AC, then T1 = H1 = P1
and the case is trivial. Let AB = c, BC = a, CA = b, ∠BAC = α,
∠CBA = β, and ∠ACB = γ.

H3

T3

T2

T1

P1

H2

H1

I

A

B Q C

H

Let Q be the intersection of lines HP1 and BC. Note that

∠HT2T1 = 90◦ − ∠T2T1T3
= 90◦ − [180◦ − ∠T3T1B − ∠CT1T2]

= 90◦ −
∙
180◦ −

µ
90◦ − β

2

¶
−
µ
90◦ − C

2

¶¸
=
α

2
.

(Likewise, ∠T2T1H = β/2.) Thus to prove that T1P1T2H is cyclic is
equivalent to prove that ∠QP1T1 = α/2.
Let QH and QP be the respective feet of perpendiculars from H and

P1 to line BC. Because ∠AH1B = ∠AH2B = 90◦, ABH1H2 is cyclic,
and so ∠T1H1P1 = ∠BH1P1 = α. Thus triangles AT3T2 and H1T1P1
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are similar, implying that

∠QPP1T1 = 90◦ − ∠P1T1H1 = 90◦ −
µ
90◦ − ∠T1H1P1

2

¶
=
α

2
.

Therefore, to prove that ∠QP1T1 = α/2, we have now reduced to proving
that QP = QH , or

T1QP
T1H1

=
T1QH
T1H1

. (1)

Note that

T1H1 = P1H1 and
T1QP
T1H1

= 1− QPH1
T1H1

,

that is,

T1QP
T1H1

= 1− QPH1
P1H1

= 1− cos∠T1H1P1 = 1− cosα. (2)

On the other hand, applying the Law of Cosines to triangle ABC gives

T1H1 = T1C −H1C = a+ b− c
2

− b cos γ

=
a+ b− c

2
− a

2 + b2 − c2
2a

=
a(b− c)− (b2 − c2)

2a
,

or

T1H1 =
(b− c)(a− b− c)

2a
=
(c− b)(b+ c− a)

2a
. (3)

Now we calculate T1QH . BecauseH is the orthocenter of triangle T1T2T3,

∠T1HT2 = 180◦ − ∠HT2T1 − ∠T2T1H
= (90◦ − ∠HT2T1) + (90◦ − ∠T2T1H)
= ∠T2T1T3 + ∠T3T2T1 = 180◦ − ∠T1T3T2.

Applying the Law of Sines to triangle T1T2H and applying the Extended
Law of Sines to triangle T1T2T3 gives

T1H

sin∠HT2T1
=

T1T2
sin∠T1HT2

=
T1T2

sin∠T1T3T2
= 2r,

and consequently,

T1H = 2r sin∠HT2T1 = 2r sin
α

2
.



Formal Solutions 45

Because

∠QHT1H = ∠CT1T2 + ∠T2T1H =
³
90◦ − γ

2

´
+
β

2

= 90◦ +
β − γ
2

,

we obtain

T1QH = T1H cos∠HT1QH = 2r sin
α

2
sin

γ − β
2

. (4)

Combining equations (1), (2), (3), and (4), we conclude that it suffices to
prove that

1− cosα = 4ar sin α
2 sin

γ−β
2

(c− b)(b+ c− a) . (5)

Applying the fact
sin α

2

cos α2
= tan

α

2
=

r

AT2
=

2r

b+ c− a,

and applying the Law of Sines to triangle ABC, (5) becomes

1− cosα = 2 sinα sin2 α2 sin
γ−β
2

cos α2 (sin γ − sinβ)
. (6)

By the Double-angle formulas, 1 − cosα = 2 sin2 α2 and sinα =

2 sin α
2 cos

α
2 and so (6) reads

sin γ − sinβ = 2 sin α
2
sin

γ − β
2

.

By the Difference-to-product formulas, the last equation reduces to

2 cos
β + γ

2
sin

γ − β
2

= 2 sin
α

2
sin

γ − β
2

,

which is evident.
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3 IMO
1. Let A be a 101-element subset of the set S = {1, 2, . . . , 1000000}.
Prove that there exist numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x+ tj | x ∈ A} j = 1, 2, . . . , 100

are pairwise disjoint.

Note. The size |S| = 106 is unnecessarily large. See the second solution
for a proof of the following stronger statement:

If A is a k-element subset of S = {1, 2, . . . , n} and m is a
positive integer such that n > (m−1)

³¡
k
2

¢
+ 1
´
, then there exists

t1, t2, . . . , tm in S such that the sets Aj = {x + tj | x ∈ A},
j = 1, 2, . . . ,m are pairwise disjoint.

During the jury meeting, people decided to use the easier version as the
first problem on the contest.

First Solution. Consider the set D = {x − y | x, y ∈ A}. There are
at most 101 × 100 + 1 = 10101 elements in D (where the summand 1
represents the difference x − y = 0 for x = y). Two sets Ai and Aj
have nonempty intersection if and only if ti − tj is in D. It suffices to
choose 100 numbers t1, t2, . . . , t100 in such a way that we do not obtain
a difference from D.
We select these elements by induction. Choose one element arbitrarily.

Assume that k elements, k ≤ 99, have already been chosen. An element
x that is already chosen prevents us from selecting any element from the
set x + D = {x + d | d ∈ D}. Thus, after k elements are chosen, at
most 10101k ≤ 999999 elements are forbidden. Hence we can select one
more element. (Note that the numbers chosen are distinct because 0 is an
element in D.)

Second Solution. (By Anders Kaseorg) We construct the set {tj} one
element at a time using the following algorithm: Let t1 = 1 ∈ A. For each
j, 1 ≤ j ≤ 100, let tj be the smallest number in S that has not yet been
crossed out, and then cross out tj and all numbers of the form tj + |x− y|
(with x, y ∈ A, x 6= y) that are in S. At each step, we cross out at most
1 +

¡
101
2

¢
= 5051 new numbers. After picking t1 through t99, we have

crossed out at most 500049 numbers, so there are always numbers in S
that have not been crossed, so there are always candidates for tj in S. (In
fact, we will never need to pick a tj bigger than 500050.)
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Now, suppose Aj and Ak are not disjoint for some 1 ≤ j < k ≤ 100.
Then x+tj = y+tk for some x, y in A. Since we cross out tj immediately
after picking it, tk 6= tj . Also, if tk < tj , we would have picked it on step
j rather than step k (because j < k). Thus tk > tj , and so x > y. But this
means that tk = tj + x− y = tj + |x− y|, so tk would have been crossed
out on step j. This is a contradiction, so all sets Aj are pairwise disjoint.

2. Determine all pairs of positive integers (a, b) such that

a2

2ab2 − b3 + 1
is a positive integer.

Note. The answers are

(a, b) = (2t, 1) or (t, 2t) or (8t4 − t, 2t)
for all positive integers t. It is routine to check the above are indeed
solutions of the problem. We prove they are the only possible solutions.
Assume that a2/(2ab2 − b3 + 1) = k, where k is a positive integer. Then
we have

a2 = 2ab2k − b3k + k. (∗)
We present three approaches.

First Solution. (Based on work by Anders Kaseorg) Rewrite equation
(∗) as a2 − 2ab2k = −b3k + k. Adding b4k2 to both sides completes the
square on the left-hand side and gives

(kb2 − a)2 = b4k2 − b3k + k,
or

(2kb2 − 2a)2 = (2b2k)2 − 2b(2b2k) + 4k.
Completing the square on the right-hand side gives

(2kb2 − 2a)2 = (2b2k − b)2 + 4k − b2.
or,

y2 − x2 = 4k − b2,
where x = 2kb2 − b and y = 2kb2 − 2a.
If 4k = b2, then either x = y or x = −y. In the former case, b = 2a;

in the latter case, 4kb2 − b = 2a, that is, b4 − b = 2a. Because k = b2/4
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is an integer if and only if b is even, we get the solutionsµ
b

2
, b

¶
and

µ
b4 − b
2

, b

¶
for any even b; that is, (a, b) = (t, 2t) and (a, b) = (8t4 − t, 2t) for all
positive integers t.
If 4k < b2, then y2 < x2, so y2 ≤ (x− 1)2 (since x is clearly positive).

Thus,

4k − b2 ≤ (x− 1)2 − x2 = −2x+ 1 = −4kb2 + 2b+ 1,
or, 4k(b2 + 1) ≤ b2 + 2b + 1 < 3b2 + 1. Because 4k > 3, this is a
contradiction.
Similarly, if 4k > b2, then y2 > x2, so y2 ≥ (x+ 1)2. Thus,

4k − b2 ≥ (x+ 1)2 − x2 = 2x+ 1 = 4kb2 − 2b+ 1,
or 4k(b2 − 1) + (b− 1)2 ≤ 0. We must have b = 1 and

k =
a2

2a− 1 + 1 =
a

2
.

This is an integer whenever a is even, so we get the solutions (a, b) =
(2t, 1) for all positive integers t.

Second Solution. (Based on work by Po-Ru Loh) Assume that b = 1.
Then

a2

2ab2 − b3 + 1 =
a2

2a
=
a

2

is an positive integer if and only if a is even. Thus, (a, b) = (2t, 1) are
solutions of the problem for all positive integers t.
Now we assume that b > 1. Viewing equation (∗) as a quadratic in a,

replace a by x to consider the equation

x2 − 2b2kx+ (b3 − 1)k = 0 (∗0)
for fixed positive integers b and k. Its roots are

x =
2b2k ±√4b4k2 − 4b3k + 4k

2
= b2k ±

p
b4k2 − b3k + k.

Assume that x1 = a is an integer root of equation (∗0). Then b4k2−b3k+k
must be a perfect square. We claim thatµ

b2k − b
2
− 1
2

¶2
< b4k2 − b3k + k <

µ
b2k − b

2
+
1

2

¶2
.
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Note first thatµ
b2k − b

2
− 1
2

¶2
= b4k2 − 2b2k

µ
b

2
+
1

2

¶2
+
1

4
(b+ 1)2

= b4k2 − b3k − b2k + 1
4
(b+ 1)2.

To establish the first inequality in our claim, it suffices to show that

−b2k + 1
4
(b+ 1)2 < k,

or, (b + 1)2 < 4(b2 + 1)k, which is evident as (b+ 1)2 < 2(b2 + 1) and
k ≥ 1.
Note also thatµ

b2k − b
2
+ 1

¶2
= b4k2 + 2b2k

µ
1

2
− b
2

¶
+
1

4
(1− b)2

> b4k2 − b3k + b2k
> b4k2 − b3k + k, as b > 1,

which establishes the second inequality in our claim.
Because all of b, k, and

√
b4k2 − b3k + k are positive integers, we

conclude from our claim that b2k − b
2 is an integer and that

b4k2 − b3k + k =
µ
b2k − b

2

¶2
= b4k − b3k + b

2

4
,

and so k = b2/4. Thus, b = 2t for some positive integer t. The two
solution of the equation (∗0) becomes

x = b2k ±
µ
b2k − b

2

¶
,

that is. x = t or x = 8t4 − t. Hence, (a, b) = (t, 2t) and (a, b) =
(8t4 − t, 2t) are the possible solutions of the problem, in addition to the
solutions (2t, 1).

Third Solution. Because both k and a2 are positive, 2ab2 − b3 + 1 > 0,
or,

2a > b− 1

b2
.

Because a and b are positive integers, we have 2a ≥ b. Because k is a
positive integer, a2 ≥ 2ab2 − b3 + 1, or, a2 ≥ b2(2a − b) + 1. Because
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2a− b ≥ 0 and a2 > b2(2a− b) ≥ 0, we have

a > b or 2a = b. (†)

We consider again the quadratic equation (∗0) for fixed positive integers b
and k, and assume that x1 = a is an integer root of equation (∗0). Then
the other root x2 is also an integer because x1 + x2 = 2b2k. Without loss
of generality, we assume that x1 ≥ x2. Then x1 ≥ b2k > 0. Furthermore,
because x1x2 = (b3 − 1)k, we obtain

0 ≤ x2 = (b3 − 1)k
x1

≤ (b
3 − 1)k
b2k

< b.

If x2 = 0, then b3 − 1 = 0, and so x1 = 2k and (a, b) can be written in
the form of (2t, 1) for some integers t.
If x2 > 0, then (a, b) = (x2, b) is a pair of positive integers satisfying

the equations (†) and (∗). We conclude that 2x2 = b, and so

k =
x22

2x2b2 − b3 + 1 = x
2
2 =

b2

4
,

and x1 = b4/2 − b/2. Thus, (a, b) can be written in the form of either
(t, 2t) or (8t3 − t, 2t) for some positive integers t.

3. A convex hexagon is given in which any two opposite sides have
the following property: the distance between their midpoints is

√
3/2

times the sum of their lengths. Prove that all the angles of the hexagon
are equal.

(A convex ABCDEF has three pairs of opposite sides: AB and DE,
BC and EF , CD and FA.)

Note. We present three solutions. The first two apply vector calculations,
while the last two are more synthetic. The solutions investigate the angles
formed by the three main diagonals. All solutions are based on the
following closely related geometric facts.

Lemma 1a. Let PQRS be a parallelogram. If PR ≥ √3QS, then
∠SPQ ≤ 60◦ with equality if and only PQRS is a rhombus.
Proof. Let PQ = x, QR = PS = y, ∠SPQ = α. Then ∠PQR =

180◦−α. Applying the Law of Cosines to triangles PQR and PQS gives

PR2 = x2 + y2 − 2xy cos∠PQR = x2 + y2 + 2xy cosα
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M

S R

QP

and QS2 = x2 + y2 − 2xy cosα. The condition PR ≥ √3QS becomes
x2 + y2 + 2xy cosα ≥ 3(x2 + y2 − 2xy cosα),

or,
4xy cosα ≥ x2 + y2.

Because x2 + y2 ≥ 2xy, we conclude that cosα ≥ 1
2 , that is, α ≤ 60◦.

Equality holds if and only if x = y, that is, PQRS is a rhombus.
If we only look at half of the parallelogram—triangle PQS—then

Lemma 1a leads to the following.
Lemma 1b. In triangle PQS, let M be the midpoint of side QS. If
2PM ≥ √3QS, then ∠SPQ ≤ 60◦. Equality holds if and only PQS is
equilateral.
We can also rewrite Lemma 1a in the language of vectors as the

following.
Lemma 1c. Let v and u be two vectors in the plane. If

|u+ v| ≥
√
3(|u− v|),

then the angle formed by u and v is no greater than 60◦, and equality
holds if and only if |u| = |v|.
Let X,Y,Z be the intersections of the diagonals of the quadrilateral

ABCDEF , as shown. All of the solutions use the following lemma.
Lemma 2. Let ABCDEF be a convex hexagon with parallel opposite
sides, that is, AB k DE, BC k EF , and CD k FA. Assume that
each pair of three diagonals AD,BE,CF form a 60◦ angle and that
AD = BE = CF . Then the hexagon is equal angular. Furthermore, the
hexagon can be obtained by cutting three congruent triangles from each
corner of a equilateral triangle.
Proof. BecauseAB k DE, trianglesXAB andXDE are similar. This

implies that XA − XB and XD − XE have the same sign. But since
AD = EB, we also have XA−XB = −(XD−XE). Thus XA = XB
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Z� Y�

X�

Z Y

X

F

E D

C

BA

and XD = XE. Because ∠AXB = 60◦, triangle XAB is equilateral, so
∠ABE = 60◦. In the same way we can show that ∠EBC = 60◦. Thus
∠ABC = 120◦. Similarly all the other angles of the hexagon measure
120◦.
Let X 0, Y 0, Z0 be the intersections of lines BC, DE, and FA. It is not

difficult to see that triangles ADZ 0, ∠BEY 0, and CFX 0 are congruent
equilateral triangles, and consequently, the hexagon is obtained by cutting
congruent equilateral triangles X 0AB, Y 0CD, and Z 0EF from equilateral
triangle X 0Y 0Z0. This completes our proof.

First Solution. (Based on work by Anders Kaseorg) Choose an arbitrary
point O as the origin. Let each lowercase letter denote the vector from O
to the point labeled with the corresponding uppercase letter. We are given:¯̄̄̄

a+ b

2
− d+ e

2

¯̄̄̄
=

√
3

2
(|b− a|+ |d− e|) .

Thus, by the Triangle Inequality, we have

|(b− e) + (a− d)| = |a+ b− d− e|
=
√
3 (|b− a|+ |d− e|)

≥
√
3|b− a+ d− e|

=
√
3|(b− e)− (a− d)|,

and inequality holds if and only if vectors b− a and d− e are differ by a
positive scale multiple. In other words,

|−−→EB +−−→DA| ≥
√
3|−−→EB −−−→DA|
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and equality holds if and only if
−−→
AB = k

−−→
ED for some real number k > 0.

By Lemma 1c, we conclude that ∠ZXY = ∠AXB ≤ 60◦.
Analogously, we can show that ∠XY Z,∠Y ZX ≤ 60◦. But this can

only happen if all of these angles measure 60◦. Hence all the equalities hold
in the above discussions. Therefore, by Lemma 1c, each pair of diagonals
AD, BE, and CF form a 60◦ angle and AD = CF = EB. Because−−→
AB = k

−−→
ED for some real number k > 0, AB k ED, Likewise,BC k DF

and CD k FA. The desired result now follows from Lemma 2.
Note. The step rearranging |a+ b− d− e| as |(b− e) + (a− d)| seems
rather tricky. The following approach reveals the importance of vectors
a− d, b− e, and c− f . Again by the Triangular Inequality, we have

|a+ b− d− e| ≥
√
3|a− b+ e− d|,

or,

(a+ b− d− e) · (a+ b− d− e) ≥ 3(a− b+ e− d) · (a− b+ e− d),
where · represents the Dot Product of vectors. Expanding the above
equation and collecting the likely terms gives

a ·a+ b · b+d ·d+ e · e− 4a · b− 4 · e+4a · e+4b ·d− 2a ·d− 2b · e ≤ 0.
Adding the analogous results from the given conditions on other pairs of
opposite sides yieldsX

cyc
(a · a− 2a · b+ 2a · c− a · d) ≤ 0,

where
P
cyc is the cyclic sum of variables (a, b, c, d, e, f). Note that the

left-hand side of the above inequality is

(a− b+ c−d+ e− f) · (a− b+ c−d+ e− f) = |a− b+ c−d+ e− f |2.
Thus, all equalities hold for all the above inequalities. In particular, AB k
DE and a−b = c−d+e−f = 0, or, c−f = −(a−b+e−d). We conclude
that AB k DE k CF and that |a+b−d−e| = √3CF . Because the given
conditions are cyclic, it is now natural to consider the other two diagonals
AD and BE, by rewriting a+ b−d− e = (b− e)+(a−d) = −−→EB+−−→DA.

Second Solution. (Based on work by Po-Ru Loh) Angles AXB, CYD,
EZF are the vertical angles of triangle XY Z (which may be degenerated
to a point), so the largest of these three angles is at least 60◦. Without loss
of generality, assume that ∠AXB is the largest angle, and so ∠AXB =
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N

M

Z
Y

X

F

E D

C

B

A

∠DXE ≥ 60◦. By Lemma 1b, we have 2XM ≤ √3AB and 2XN ≤√
3DE, implying that

XM +XN ≤
√
3

2
(AB +DE).

By the Triangle Inequality, we have

MN ≤ XM +XN ≤
√
3

2
(AB +DE).

By the given condition, all equalities hold in our discussions above. Thus,
all the conditions of Lemma 2 are satisfied, from which our desired result
follows.

Third Solution. (Based on the comments from Svetoslav “Beto” Savchev,
member of the IMO Problem Selection Committee) We want to “add” the
length of AB and DE without violating the midpoints constrain.
Let G and H be points such that AMHD and BMGE are parallel-

ograms. Thus, AD = MH , BE = MG, AD k MH , and BE k MG.
We conclude that ∠AXB = ∠GMH and that MG =MH if and only if
AD = BE.

H

G

A

B

C

D

E

F

X

Y
Z

M

N
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Because N is the midpoint of segment DE, it is not hard to see that
GEHD is also a parallelogram, and so N is the midpoint of segment GH .
Note that AB + ED = GE + ED + DH ≥ GH , and equality holds if
and only if AB k DE. In triangle MGH , median MN is at least

√
3/2

opposite side GH . By Lemma 1b, we conclude that ∠GMH ≥ 60◦, that
is, ∠AXB = ∠ZXY ≥ 60◦. Likewise, ∠XY Z,∠Y ZX ≥ 60◦. Thus, all
inequalities hold, implying that all the conditions of Lemma 2 hold, from
which our desired follows.

4. Let ABCD be a convex quadrilateral. Let P,Q and R be the feet of
perpendiculars from D to lines BC,CA and AB, respectively. Show
that PQ = QR if and only if the bisectors of angles ABC and ADC
meet on segment AC.

Note. The condition that ABCD be cyclic is not necessary.
Solution. As usual, we set ∠ABC = β, ∠BCA = γ, and ∠CAB = α.
Because ∠DPC = ∠CQD = 90◦, quadrilateral CPDQ is cyclic with
CD a diameter of the circumcircle. By the Extended Law of Sines, we
have PQ = CD sin∠PCQ = CD sin(180◦ − γ) = CD sin γ. Likewise,
by working with cyclic quadrilateral ARQD, we find RQ = AD sinα.
Hence, PQ = RQ if and only if CD sin γ = AD sinα. Applying the Law
of Sines to triangles BAC, we conclude that

PQ = RQ if and only if
AB

BC
=
AD

CD
. (∗)

On the other hand, let bisectors of ∠CBA and ∠ADC meet segment AC
at X and Y , respectively. By the Angle-bisector Theorem, we have

AX

CX
=
AB

BC
and

AY

CY
=
AD

CD
.

X, Y

R

Q

P

D

C

B

A
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Hence, the bisectors of ∠ABC and ∠ADC meet on segment AC if and
only if X = Y , or,

AB

BC
=
AX

CX
=
AY

CY
=
AD

CD
. (∗∗)

Our desired result follows from relations (∗) and (∗∗).

5. Let n be a positive integer and x1, x2, . . . , xn be real numbers with
x1 ≤ x2 ≤ · · · ≤ xn.
(a) Prove that nX

i=1

nX
j=1

|xi − xj |
2 ≤ 2(n2 − 1)

3

nX
i=1

nX
j=1

(xi − xj)2.

(b) Show that the equality holds if and only if x1, x2, . . . , xn form
an arithmetic sequence.

Note. The desired inequality fits well in the format of the Cauchy–
Schwarz Inequality. Part (b) also indicates that the equality case of
Cauchy-Schwarz Inequality holds if and only if xi − xj = d(i − j), that
is, xi−xji−j = d. Thus, it is natural to explore the the relation between

2(n2 − 1)
3

and
nX

i,j=1

(i− j)2.

Because part (b) helps to solve this problem, people suggested removing
this part during the jury meeting at the IMO. After some careful discus-
sions, people decided to leave it as it is. In authors’ view, it might be better
(and certainly more difficult) to ask the question in the following way:

Let n be a positive integer and x1, x2, . . . , xn be real numbers
with x1 ≤ x2 ≤ · · · ≤ xn. Determine the smallest constant c, in
terms of n, such that nX

i=1

nX
j=1

|xi − xj |
2 ≤ c nX

i=1

nX
j=1

(xi − xj)2.

Solution. We adapt double sum notation
nX

i,j=1

for
nX
i=1

nX
j=1

.
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The desired inequality reads nX
i,j=1

|xi − xj |
2 ≤ 2(n2 − 1)

3

nX
i,j=1

(xi − xj)2.

By Cauchy–Schwarz Inequality, we have nX
i,j=1

(xi − xj)2
 nX

i,j=1

(i− j)2
 ≥
 nX
i,j=1

|i− j||xi − xj |
2 .

It suffices to show that
nX

i,j=1

(i− j)2 = n2(n2 − 1)
6

(†)

and  nX
i,j=1

|i− j||xi − xj |
2 = n2

4

 nX
i,j=1

|xi − xj |
2 ,

or
nX

i,j=1

|i− j||xi − xj | = n

2

nX
i,j=1

|xi − xj |. (‡)

Note that
nX

i,j=1

(i− j)2 =
nX

i,j=1

(i2 + j2 − 2ij) =
nX

i,j=1

(i2 + j2)− 2
nX
i=1

nX
j=1

ij

= 2
nX

i,j=1

i2 − 2
Ã

nX
i=1

i

! nX
j=1

j


= 2

nX
i=1

nX
j=1

i2 − 2
µ
n(n+ 1)

2

¶2
= 2

nX
i=1

ni2 − n
2(n+ 1)2

2

= 2n · n(n+ 1)(2n+ 1)
6

− n
2(n+ 1)2

2

= n2(n+ 1) · 2(2n+ 1)− 3(n+ 1)
6

= n2(n+ 1)
n− 1
6

=
n2(n2 − 1)

6
,

establishing identity (†).
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To establish identity (‡), we compare the coefficients of xi, 1 ≤ i ≤ n,
on both sides of the identity. The coefficient of xi on the left-hand side is
equal to

(i− 1) + (i− 2) + · · ·+ [(i− (i− 1)]− [(i+ 1)− i]− · · ·− (n− i)

=
i(i− 1)
2

− (n− i)(n− i+ 1)
2

=
i(i− 1)− n2 + (2i− 1)n− i(i− 1)

2

=
n(2i− n− 1)

2
.

On the other hand, the coefficient of xi on the right-and side is equal to
n

2
[(1 + 1 + · · ·+ 1)| {z }

i−1 times

− (1 + 1 + · · ·+ 1)| {z }
n−i times

] =
n

2
(2i− n− 1).

Therefore, identity (‡) is true and the proof of part (a) is complete.
There is only one inequality step (when we applied Cauchy-Schwarz

Inequality) in our proof of the desired inequality. The equality holds if and
only if the Cauchy-Schwarz Inequality reaches equality, that is,

xi − xj
i− j = d

is a constant for 1 ≤ i, j ≤ n. In particular, xi − x1 = d(i − 1), that is,
x1, x2, . . . , xn is an arithmetic sequence.

6. Let p be a prime number. Prove that there exists a prime number q
such that for every integer n, the number np− p is not divisible by q.

Solution. We approach indirectly by assuming that such q does not exist.
Then for any fixed prime q, there is a positive integer n such that np − p
is divisible by q, that is

np ≡ p (mod q). (∗)
If q divides n, then q divides p, and so q = p. We further assume that
q 6= p. Hence q does not divide n. We start with the following well-known
fact.

Lemma. Let q be a prime, and let n be a positive integer relatively prime
to q. Denote by dn the order of n modulo q, that is, dn is the smallest
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positive integer such that ndn ≡ 1 (mod q). Then for any positive integer
m such that nm ≡ 1 (mod q), dn divides m.
Proof. By the minimality of dn, we can write m = dnk + r where k

and r are integers with 1 ≤ k and 0 ≤ r < dn. Then
1 ≡ nm ≡ ndnk+r ≡ ndnk · nr = nr (mod q).

By the minimality of dn, r = 0, that is, dn divides m.
By Fermat’s little Theorem, nq−1 ≡ 1 (mod q). Thus, by the Lemma,

dn divides q − 1. For the positive integer n, because np ≡ p (mod q),
we have npdp ≡ pdp ≡ 1 (mod q). Thus, by the Lemma, dn divides both
q − 1 and pdp, implying that dn divides gcd(q − 1, pdp).
Now we pick a prime q such that (a) q divides p

p−1
p−1 = 1+p+· · ·+pp−1,

and (b) p2 does not divide q − 1. First we show that such a q does exist.
Note that 1 + p + · · · + pp−1 ≡ 1 + p 6≡ 1 (mod p2). Hence there is a
prime divisor of 1 + p+ · · ·+ pp−1 that is not congruent to 1 modulo p2,
and we can choose that prime to be our q.
By (a), pp ≡ 1 (mod q) (and p 6= q). By the Lemma, dp divides p, and

so dp = p or dp = 1.
If dp = 1, then p ≡ 1 (mod q).
If dp = p, then dn divides gcd(p2, q − 1). By (b), the possible values

of dn are 1 and p, implying that np ≡ 1 (mod q). By relation (∗), we
conclude p ≡ 1 (mod q).
Thus, in any case, we have p ≡ 1 (mod q). But then by (a), 0 ≡

1 + p + · · · + pp−1 ≡ p (mod q), implying that p = q, which is a
contradiction. Therefore our original assumption was wrong, and there
is a q such that for every integer n, the number np − p is not divisible by
q.

Note. The proof can be shortened by starting directly with the definition
of q as in the second half of the above proof. But we think the argument
in the first part provides motivation for the choice of this particular q.
Many students were able to apply Fermat’s Little Theorem to realize

that npdp ≡ pdp ≡ 1 (mod q). It is also not difficult to see that there
are integers n such that ndp 6= 1 (mod q), because of the existence of
primitive roots modulo q. By the minimality of dp, we conclude that
dp = pk, where k is some divisor of dp. Consequently, we have pk | (q−1),
implying that q ≡ 1 (mod p). This led people to think about various
applications of Dirichlet’s Theorem, which is an very popular but fatal
approach to this problem. However, a solution with advanced mathematics
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background is available. It involves a powerful prime density theorem.
The prime q satisfies the required condition if and only if q remains a
prime in the field k = Q( p

√
p). By applying Chebotarev’s density theorem

to the Galois closure of k, we can show that the set of such q has
density 1

p , implying that there are infinitely many q satisfying the required
condition. Of course, this approach is far beyond the knowledge of most
IMO participants.
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5
Glossary

Angle Bisector Theorem Let ABC be a triangle, and let D be a point
of side BC such that segment AD bisects ∠BAC. Then

AB

AC
=
BD

DC
.

Cauchy–Schwarz Inequality For any real numbers a1, a2, . . . , an, and
b1, b2, . . . , bn

(a21 + a
2
2 + · · ·+ a2n)(b21 + b22 + · · ·+ b2n)
≥ (a1b1 + a2b2 + · · ·+ anbn)2,

with equality if and only if ai and bi are proportional, i = 1, 2, . . . , n.

Ceva’s theorem and its trigonometric form Let AD, BE, CF be three
cevians of triangle ABC. The following are equivalent:

(i) AD,BE,CF are concurrent;

(ii)
AF

FB
· BD
DC

· CE
EA

= 1;

(iii)
sin∠ABE
sin∠EBC ·

sin∠BCF
sin∠FCA ·

sin∠CAD
sin∠DAB = 1.

Cevian A cevian of a triangle is any segment joining a vertex to a point
on the opposite side.
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Cyclic Sum Let n be a positive integer. Given a function f of n variables,
define the cyclic sum of variables (x1, x2, . . . , xn) asX

cyc
f(x1, x2, . . . , xn) = f(x1, x2, . . . , xn) + f(x2, x3, . . . , xn, x1)

+ · · ·+ f(xn, x1, x2, . . . , xn−1).

Dirichlet’s Theorem A set S of primes is said to have Dirichlet density
if

lim
s→1

P
p∈S p

−s

ln(s− 1)−1
exists, where ln denotes the natural logarithm. If the limit exists we denote
it by d(S) and call d(S) the Dirichlet density of S.
There are infinitely many primes in any arithmetic sequence of integers

for which the common difference is relatively prime to the terms. In other
words, let a and m be relatively prime positive integers, then there are
infinitely many primes p such that p ≡ a (mod m). More precisely, let
S(a;m) denote the set of all such primes. Then d(S(a;m)) = 1/φ(m),
where φ is Euler’s function.

Dot Product Let n be an integer greater then 1, and let u = [a1, a2, . . . , an]
and v = [b1, b2, . . . , bn] be two vectors. Define their dot product u · v =
a1b1 + a2b2 + · · ·+ anbn. It is easy to check that
(i) v ·v = |v|2, that is, the dot product of vector with itself is the square
of the magnitude of v and v · v ≥ 0 with equality if and only if
v = [0, 0, . . . , 0];

(ii) u · v = v · u;
(iii) u · (v +w) = u · v + u ·w, where w is a vector;

(iv) (cu) · v = c(u · v), where c is a scalar.
When vectors u and v are placed tail-by-tail at the origin O, let A and B
be the tips of u and v, respectively. Then

−−→
AB = v− u. Let ∠AOB = θ.

Applying the Law of Cosines to triangle AOB yields

|v − u|2 = AB2 = OA2 +OB2 − 2OA ·OB cos θ
= |u|2 + |v|2 − 2|u||v| cos θ.

It follows that

(v − u) · (v − u) = u · u+ v · v − 2|u||v| cos θ,
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or,
cos θ =

u · v
|u||v| .

Consequently, if 0 ≤ θ ≤ 90◦, u · v ≥ 0. Considering the range of cos θ,
we have provided a proof of the Cauchy–Schwarz Inequality.

Extended Law of Sines In a triangle ABC with circumradius equal to
R,

BC

sinA
=

CA

sinB
=
AB

sinC
= 2R.

Fermat’s Little Theorem If p is prime, then ap ≡ a (mod p) for all
integers a.

Law of Cosines In a triangle ABC,

CA2 = AB2 +BC2 − 2AB ·BC cos∠ABC,
and analogous equations hold for AB2 and BC2.

Pigeonhole Principle If n objects are distributed among k < n boxes,
some box contains at least two objects.

Primitive Root Let n be a positive integer. An integer a is called a
primitive root modulo n if a and n are relatively prime and φ(n) is the
smallest positive integer such that aφ(n) ≡ 1 (mod n). Integer n possesses
primitive roots if and only if n is of the form 2, 4, pm, 2pm, where p is
an odd prime and m is a positive integer. If n = p is a prime, then
φ(p) = p − 1. Equivalently, an integer a is a primitive root modulo p if
and only if a, a2, . . . , ap−1 are all distinct modulo p, that is,

{a, a2, . . . , ap−1} ≡ {1, 2, . . . p− 1} (mod p).

Schur’s Inequality Let x, y, z be nonnegative real numbers. Then for
any r > 0,

xr(x− y)(x− z) + yr(y − z)(y − x) + zr(z − x)(z − y) ≥ 0.
Equality holds if and only if x = y = z or if two of x, y, z are equal and
the third is equal to 0.
The proof of the inequality is rather simple. Because the inequality is

symmetric in the three variables, we may assume without loss of generality
that x ≥ y ≥ z. Then the given inequality may be rewritten as

(x− y)[xr(x− z)− yr(y − z)] + zr(x− z)(y − z) ≥ 0,
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and every term on the left-hand side is clearly nonnegative. The first term is
positive if x > y, so equality requires x = y, as well as zr(x−z)(y−z) =
0, which gives either x = y = z or z = 0.

Spiral Similarity See transformation.

Transformation A transformation of the plane is a mapping of the plane
onto itself such that every point P is mapped into a unique image P 0

and every point Q0 has a unique prototype (preimage, inverse image,
counterimage) Q.

A reflection across a line (in the plane) is a transformation which takes
every point in the plane into its mirror image, with the line as mirror. A
rotation is a transformation when the entire plane is rotated about a fixed
point in the plane.

A similarity is a transformation that preserves ratios of distances. If P 0

and Q0 are the respective images of points P and Q under a similarity T,
then the ratio P 0Q0/PQ depends only on T. This ratio is the similitude
of T. A dilation is a direction-preserving similarity, i.e., a similarity that
takes each line into a parallel line.

The product T2T1 of two transformations is transformation defined by
T2T1 = T2◦T1, where ◦ denotes function composition. A spiral similarity
is the product of a rotation and a dilation, or vice versa.

Triangle Inequality Let z = a + bi be a complex number. Define the
absolute value of z to be

|z| =
p
a2 + b2.

Let α and β be two complex numbers. The inequality

|α+ β| ≤ |α|+ |β|
is called the triangle inequality.
Let α = α1 + α2i and β = β1 + β2i, where α1,α2,β1,β2 are real

numbers. Then α + β = (α1 + β1) + (α2 + β2)i. Vectors u = [α1,α2],
v = [β1,β2], and w = [α1+β1,α2+β2] form a triangle with sides lengths
|α|, |β|, and |α+β|. The triangle inequality restates the fact the the length
of any side of a triangle is less than the sum of the lengths of the other
two sides.
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Trigonometric Identities

sin2 x+ cos2 x = 1,

tanx =
sinx

cosx
, cotx =

1

tanx
,

sin(−x) = − sinx, cos(−x) = cosx,
tan(−x) = − tanx, cot(−x) = − cotx,
sin(90◦ ± x) = cosx, cos(90◦ ± x) = ∓ sinx,
tan(90◦ ± x) = ∓ cotx, cot(90◦ ± x) = ∓ tanx,
sin(180◦ ± x) = ∓ sinx, cos(180◦ ± x) = − cosx,
tan(180◦ ± x) = ± tanx, cot(180◦ ± x) = ± cotx.

Addition and subtraction formulas:

sin(a± b) = sin a cos b± cos a sin b,
cos(a± b) = cos a cos b∓ sin a sin b,

tan(a± b) = tan a± tan b
1∓ tan a tan b .

Double-angle formulas:

sin 2a = 2 sin a cos a,

cos 2a = 2 cos2 a− 1 = 1− 2 sin2 a = cos2 α− sin2 α,

tan 2a =
2 tan a

1− tan2 a.

Triple-angle formulas:

sin 3a = 3 sin a− 4 sin3 a = (3− 4 sin2 a) sin a = (4 cos2 a− 1) sin a,
cos 3a = 4 cos3 a− 3 cos a = (4 cos2−3) cos a = (1− 4 sin2 a) cos a,

tan 3a =
3 tan a− tan3 a
1− 3 tan2 a .

Half-angle formulas:

sin2
a

2
=
1− cos a

2
,

cos2
a

2
=
1 + cos a

2
.
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Sum-to-product formulas:

sin a+ sin b = 2 sin
a+ b

2
cos

a− b
2
,

cos a+ cos b = 2 cos
a+ b

2
cos

a− b
2
,

tan a+ tan b =
sin(a+ b)

cos a cos b
.

Difference-to-product formulas:

sin a− sin b = 2 sin a− b
2

cos
a+ b

2
,

cos a− cos b = −2 sin a− b
2

sin
a+ b

2
,

tan a− tan b = sin(a− b)
cos a cos b

.

Product-to-sum formulas:

2 sin a cos b = sin(a+ b) + sin(a− b),
2 cos a cos b = cos(a+ b) + cos(a− b),
2 sin a sin b = − cos(a+ b) + cos(a− b).

Weighted AM-GM Inequality If a1, a2, . . . , an are n nonnegative real
numbers, and if m1, m2, . . . , mn are positive real numbers satisfying

m1 +m2 + · · ·+mn = 1,

then
m1a1 +m2a2 + · · ·+mnan ≥ am1

1 am2
2 · · · amn

n ,

with equality if and only if a1 = a2 = · · · = an.
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2003.

15. Andreescu, T.; Gelca, R.,Mathematical Olympiad Challenges, Birkhäuser,
2000.

16. Andreescu, T.; Andrica, D., 360 Problems for Mathematical Contests,
GIL Publishing House, 2003.

17. Andreescu, T.; Andrica, D., An Introduction to Diophantine Equa-
tions, GIL Publishing House, 2002.

18. Barbeau, E., Polynomials, Springer-Verlag, 1989.

19. Beckenbach, E. F.; Bellman, R., An Introduction to Inequalities, New
Mathematical Library, Vol. 3, Mathematical Association of America,
1961.

20. Bollobas, B., Graph Theory, An Introductory Course, Springer-Verlag,
1979.

21. Chinn, W. G.; Steenrod, N. E., First Concepts of Topology, New
Mathematical Library, Vol. 27, Mathematical Association of America,
1966.

22. Cofman, J., What to Solve?, Oxford Science Publications, 1990.

23. Coxeter, H. S. M.; Greitzer, S. L., Geometry Revisited, New Mathe-
matical Library, Vol. 19, Mathematical Association of America, 1967.

24. Coxeter, H. S. M., Non-Euclidean Geometry, The Mathematical As-
sociation of America, 1998.

25. Doob, M., The Canadian Mathematical Olympiad 1969–1993, Uni-
versity of Toronto Press, 1993.



Further Reading 71

26. Engel, A., Problem-Solving Strategies, Problem Books in Mathemat-
ics, Springer, 1998.

27. Fomin, D.; Kirichenko, A., Leningrad Mathematical Olympiads 1987–
1991, MathPro Press, 1994.

28. Fomin, D.; Genkin, S.; Itenberg, I., Mathematical Circles, American
Mathematical Society, 1996.

29. Graham, R. L.; Knuth, D. E.; Patashnik, O., Concrete Mathematics,
Addison-Wesley, 1989.

30. Gillman, R., A Friendly Mathematics Competition, The Mathematical
Association of America, 2003.

31. Greitzer, S. L., International Mathematical Olympiads, 1959–1977,
New Mathematical Library, Vol. 27, Mathematical Association of
America, 1978.

32. Grossman, I.; Magnus, W., Groups and Their Graphs, New Mathe-
matical Library, Vol. 14, Mathematical Association of America, 1964.

33. Holton, D., Let’s Solve Some Math Problems, A Canadian Mathemat-
ics Competition Publication, 1993.

34. Ireland, K.; Rosen, M., A Classical Introduction to Modern Number
Theory, Springer-Verlag, 1982.

35. Kazarinoff, N. D., Geometric Inequalities, New Mathematical Library,
Vol. 4, Mathematical Association of America, 1961.

36. Kedlaya, K; Poonen, B.; Vakil, R., The William Lowell Putnam
Mathematical Competition 1985–2000, The Mathematical Association
of America, 2002.

37. Klamkin, M., International Mathematical Olympiads, 1978–1985,
New Mathematical Library, Vol. 31, Mathematical Association of
America, 1986.

38. Klamkin, M., USA Mathematical Olympiads, 1972–1986, New Math-
ematical Library, Vol. 33, Mathematical Association of America, 1988.

39. Klee, V.; Wagon, S, Old and New Unsolved Problems in Plane
Geometry and Number Theory, The Mathematical Association of
America, 1991.
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7
Appendix

1 2003 Olympiad Results
Tiankai Liu and Po-Ru Loh, both with perfect scores, were the winners
of the Samuel Greitzer-Murray Klamkin award, given to the top scorer(s)
on the USAMO. Mark Lipson placed third on the USAMO. They were
awarded college scholarships of $5000, $5000, $2000, respectively, by the
Akamai Foundation. The Clay Mathematics Institute (CMI) award, for a
solution of outstanding elegance, and carrying a $3000 cash prize, was
presented to Tiankai Liu for his solution to USAMO Problem 6. Two
additional CMI awards, carrying a $1000 cash prize each, were presented
to Anders Kaseorg and Matthew Tang for their solutions to USAMO
Problem 5.

The top twelve students on the 2003 USAMO were (in alphabetical order):
Boris Alexeev Cedar Shoals High School Athens, GA
Jae Bae Academy of Advancement Hackensack, NJ

in Science and Technology
Daniel Kane West High School Madison, WI
Anders Kaseorg Charlotte Home Charlotte, NC

Educators Association
Mark Lipson Lexington High School Lexington, MA
Tiankai Liu Phillips Exeter Academy Exeter, NH
Po-Ru Loh James Madison Madison, WI

Memorial High School
Po-Ling Loh James Madison Madison, WI

Memorial High School
Aaron Pixton Vestal Senior High School Vestal, NY
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Kwokfung Tang Phillips Exeter Academy Exeter, NH
Tony Zhang Phillips Exeter Academy Exeter, NH
Yan Zhang Thomas Jefferson High Alexandria, VA

School of Science
and Technology

The USA team members were chosen according to their combined
performance on the 32nd annual USAMO and the Team Selection Test that
took place at the Mathematical Olympiad Summer Program (MOSP) held
at the University of Nebraska-Lincoln, June 15–July 5, 2003. Members
of the USA team at the 2003 IMO (Tokyo, Japan) were Daniel Kane,
Anders Kaseorg, Mark Lipson, Po-Ru Loh, Aaron Pixton, and Yan Zhang.
Zuming Feng (Phillips Exeter Academy) and Gregory Galperin (Eastern
Illinois University) served as team leader and deputy leader, respectively.
The team was also accompanied by Melanie Wood (Princeton University)
and Steven Dunbar (University of Nebraska-Lincoln), as the observer of
the team leader and deputy leader, respectively.
At the 2003 IMO, gold medals were awarded to students scoring between

29 and 42 points, silver medals to students scoring between 19 and
28 points, and bronze medals to students scoring between 13 and 18
points. There were 37 gold medalists, 69 silver medalists, and 104 bronze
medalists. There were three perfect papers (Fu from China, Le and Nguyen
from Vietnam) on this very difficult exam. Loh’s 36 tied for 12th place
overall. The team’s individual performances were as follows:

Kane GOLD Medallist Loh GOLD Medallist
Kaseorg GOLD Medallist Pixton GOLD Medallist
Lipson SILVER Medallist Y. Zhang SILVER Medallist

In terms of total score (out of a maximum of 252), the highest ranking
of the 82 participating teams were as follows:

Bulgaria 227 Romania 143
China 211 Turkey 133
USA 188 Japan 131
Vietnam 172 Hungary 128
Russia 167 United Kingdom 128
Korea 157 Canada 119

Kazakhastan 119
The 2003 USAMO was prepared by Titu Andreescu (Chair), Zuming

Feng, Kiran Kedlaya, and Richard Stong. The Team Selection Test was
prepared by Titu Andreescu and Zuming Feng. The MOSP was held at
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the University of Nebraska-Lincoln. Zuming Feng (Academic Director),
Gregory Galperin, and Melanie Wood served as instructors, assisted by
Po-Shen Loh and Reid Barton as junior instructors, and Ian Le and Ricky
Liu as graders. Kiran Kedlaya served as guest instructor.
For more information about the USAMO or the MOSP, contact Steven

Dunbar at sdunbar@math.unl.edu.

2 2002 Olympiad Results
Daniel Kane, Ricky Liu, Tiankai Liu, Po-Ru Loh, and Inna Zakharevich,
all with perfect scores, tied for first on the USAMO. They shared college
scholarships of $30000 provided by the Akamai Foundation. The Clay
Mathematics Institute (CMI) award, for a solution of outstanding elegance,
and carrying a $1000 cash prize, was presented to Michael Hamburg, for
the second year in a row, for his solution to USAMO Problem 6.

The top twelve students on the 2002 USAMO were (in alphabetical order):

Steve Byrnes Roxbury Latin School West Roxbury, MA
Michael Hamburg Saint Joseph High School South Bend, IN
Neil Herriot Palo Alto High School Palo Alto, CA
Daniel Kane West High School Madison, WI
Anders Kaseorg Charlotte Home Charlotte, NC

Educators Association
Ricky Liu Newton South High School Newton, MA
Tiankai Liu Phillips Exeter Academy Exeter, NH
Po-Ling Loh James Madison Madison, WI

Memorial High School
Alison Miller Home Educators Niskayuna, NY

Enrichment Group
Gregory Price Thomas Jefferson High Alexandria, VA

School of Science
and Technology

Tong-ke Xue Hamilton High School Chandler, AZ
Inna Zakharevich Henry M. Gunn High School Palo Alto, CA

The USA team members were chosen according to their combined
performance on the 31st annual USAMO and the Team Selection Test that
took place at the Mathematics Olympiad Summer Program (MOSP) held
at the University of Nebraska-Lincoln, June 18–July 13, 2002. Members of
the USA team at the 2002 IMO (Glasgow, United Kingdom) were Daniel
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Kane, Anders Kaseorg, Ricky Liu, Tiankai Liu, Po-Ru Loh, and Tong-ke
Xue. Titu Andreescu (Director of the American Mathematics Competitions)
and Zuming Feng (Phillips Exeter Academy) served as team leader and
deputy leader, respectively. The team was also accompanied by Reid Barton
(Massachusetts Institute of Technology) and Steven Dunbar (University of
Nebraska-Lincoln) as the observers of the team leader, and Zvezdelina
Stankova (Mills College) as the observer of the deputy leader.
At the 2002 IMO, gold medals were awarded to students scoring between

29 and 42 points (there were three perfect papers on this very difficult
exam), silver medals to students scoring between 23 and 28 points, and
bronze medals to students scoring between 14 and 22 points. Loh’s 36
tied for fourth place overall. The team’s individual performances were as
follows:

Kane GOLD Medallist T. Liu GOLD Medallist
Kaseorg SILVER Medallist Loh GOLD Medallist
R. Liu GOLD Medallist Xue Honorable Mention

In terms of total score (out of a maximum of 252), the highest ranking
of the 84 participating teams were as follows:

China 212 Taiwan 161
Russia 204 Romania 157
USA 171 India 156
Bulgaria 167 Germany 144
Vietnam 166 Iran 143
Korea 163 Canada 142

The 2002 USAMO was prepared by Titu Andreescu (Chair), Zuming
Feng, Gregory Galperin, Alexander Soifer, Richard Stong and Zvezdelina
Stankova. The Team Selection Test was prepared by Titu Andreescu and
Zuming Feng. The MOSP was held at the University of Nebraska-Lincoln.
Because of a generous grant from the Akamai Foundation, the 2002 MOSP
expanded from the usual 24–30 students to 176. An adequate number of in-
structors and assistants were appointed. Titu Andreescu (Director), Zuming
Feng, Dorin Andrica, Bogdan Enescu, Chengde Feng, Gregory Galperin,
Razvan Gelca, Alex Saltman, Zvezdelina Stankova, Walter Stromquist,
Zoran Suniḱ, Ellen Veomett, and Stephen Wang served as instructors,
assisted by Reid Barton, Gabriel Carroll, Luke Gustafson, Andrei Jorza,
Ian Le, Po-Shen Loh, Mihai Manea, Shuang You, and Zhongtao Wu.
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3 2001 Olympiad Results
The top twelve students on the 2001 USAMO were (in alphabetical order):

Reid W. Barton Arlington, MA
Gabriel D. Carroll Oakland, CA
Luke Gustafson Breckenridge, MN
Stephen Guo Cupertino, CA
Daniel Kane Madison, WI
Ian Le Princeton Junction, NJ
Ricky I. Liu Newton, MA
Tiankai Liu Saratoga, CA
Po-Ru Loh Madison, WI
Dong (David) Shin West Orange, NJ
Oaz Nir Saratoga, CA
Gregory Price Falls Church, VA

Reid Barton was the winner of the Samuel Greitzer-Murray Klamkin
award, given to the top scorer on the USAMO. Reid Barton, Gabriel D.
Carroll, Tiankai Liu placed first, second, and third, respectively, on the
USAMO. They were awarded college scholarships of $15000, $10000,
$5000, respectively, by the Akamai Foundation. The Clay Mathematics
Institute (CMI) award, for a solution of outstanding elegance, and carrying
a $1000 cash prize, was presented to Michael Hamburg for his solution to
USAMO Problem 6.
The USA team members were chosen according to their combined

performance on the 30th annual USAMO and the Team Selection Test
that took place at the MOSP held at the Georgetown University, June
5-July 3, 2001. Members of the USA team at the 2001 IMO (Washington,
D.C., United States of America) were Reid Barton, Gabriel D. Carroll,
Ian Le, Tiankai Liu, Oaz Nir, and David Shin. Titu Andreescu (Director
of the American Mathematics Competitions) and Zuming Feng (Phillips
Exeter Academy) served as team leader and deputy leader, respectively.
The team was also accompanied by Zvezdelina Stankova (Mills College),
as the observer of the team deputy leader.
At the 2001 IMO, gold medals were awarded to students scoring between

30 and 42 points (there were 4 perfect papers on this very difficult exam),
silver medals to students scoring between 19 and 29 points, and bronze
medals to students scoring between 11 and 18 points. Barton and Carroll
both scored perfect papers. The team’s individual performances were as
follows:
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Barton Homeschooled GOLD Medallist
Carroll Oakland Technical HS GOLD Medallist
Le West Windsor-Plainsboro HS GOLD Medallist
Liu Phillips Exeter Academy GOLD Medallist
Nir Monta Vista HS SILVER Medallist
Shin West Orange HS SILVER Medallist

In terms of total score (out of a maximum of 252), the highest ranking
of the 83 participating teams were as follows:

China 225 India 148
USA 196 Ukraine 143
Russia 196 Taiwan 141
Bulgaria 185 Vietnam 139
Korea 185 Turkey 136
Kazakhstan 168 Belarus 135

The 2001 USAMO was prepared by Titu Andreescu (Chair), Zuming
Feng, Gregory Galperin, Alexander Soifer, Richard Stong and Zvezdelina
Stankova. The Team Selection Test was prepared by Titu Andreescu and
Zuming Feng. The MOSP was held at Georgetown University, Washington,
D.C. Titu Andreescu (Director), Zuming Feng, Alex Saltman, and Zvezde-
lina Stankova served as instructors, assisted by George Lee, Melanie Wood,
and Daniel Stronger.

4 2000 Olympiad Results
The top twelve students on the 2000 USAMO were (in alphabetical order):

David G. Arthur Toronto, ON
Reid W. Barton Arlington, MA
Gabriel D. Carroll Oakland, CA
Kamaldeep S. Gandhi New York, NY
Ian Le Princeton Junction, NJ
George Lee, Jr. San Mateo, CA
Ricky I. Liu Newton, MA
Po-Ru Loh Madison, WI
Po-Shen Loh Madison, WI
Oaz Nir Saratoga, CA
Paul A. Valiant Belmont, MA
Yian Zhang Madison, WI
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Reid Barton and Ricky Liu were the winners of the Samuel Greitzer-
Murray Klamkin award, given to the top scorer(s) on the USAMO. The
Clay Mathematics Institute (CMI) award was presented to Ricky Liu for
his solution to USAMO Problem 3.
The USA team members were chosen according to their combined

performance on the 29th annual USAMO and the Team Selection Test
that took place at the MOSP held at the University of Nebraska-Lincoln,
June 6–July 4, 2000. Members of the USA team at the 2000 IMO (Taejon,
Republic of Korea) were Reid Barton, George Lee, Ricky Liu, Po-Ru
Loh, Oaz Nir, and Paul Valiant. Titu Andreescu (Director of the American
Mathematics Competitions) and Zuming Feng (Phillips Exeter Academy)
served as team leader and deputy leader, respectively. The team was
also accompanied by Dick Gibbs (Chair, Committee on the American
Mathematics Competitions, Fort Lewis College), as the official observer
of the team leader.
At the 2000 IMO, gold medals were awarded to students scoring between

30 and 42 points (there were four perfect papers on this very difficult
exam), silver medals to students scoring between 20 and 29 points, and
bronze medals to students scoring between 11 and 19 points. Barton’s 39
tied for 5th. The team’s individual performances were as follows:

Barton Homeschooled GOLD Medallist
Lee Aragon HS GOLD Medallist
Liu Newton South HS SILVER Medallist
P.-R. Loh James Madison Memorial HS SILVER Medallist
Nir Monta Vista HS GOLD Medallist
Valiant Milton Academy SILVER Medallist

In terms of total score (out of a maximum of 252), the highest ranking
of the 82 participating teams were as follows:

China 218 Belarus 165
Russia 215 Taiwan 164
USA 184 Hungary 156
Korea 172 Iran 155
Bulgaria 169 Israel 139
Vietnam 169 Romania 139

The 2000 USAMO was prepared by Titu Andreescu (Chair), Zuming
Feng, Kiran Kedlaya, Alexander Soifer, Richard Stong and Zvez-delina
Stankova. The Team Selection Test was prepared by Titu Andreescu and
Kiran Kedlaya. The MOSP was held at the University of Nebraska-Lincoln.
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Titu Andreescu (Director), Zuming Feng, Razvan Gelca, Kiran Kedlaya,
Alex Saltman, and Zvezdelina Stankova served as instructors, assisted by
Melanie Wood and Daniel Stronger.

5 1999 Olympiad Results
The top eight students on the 1999 USAMO were (in alphabetical order):

Reid W. Barton Arlington, MA
Gabriel D. Carroll Oakland, CA
Lawrence O. Detlor New York, NY
Stephen E. Haas Sunnyvale, CA
Po-Shen Loh Madison, WI
Alexander B. Schwartz Bryn Mawr, PA
Paul A. Valiant Belmont, MA
Melanie E. Wood Indianapolis, IN

Alexander (Sasha) Schwartz was the winner of the Samuel Greitzer-
Murray Klamkin award, given to the top scorer on the USAMO. Newly in-
troduced was the Clay Mathematics Institute (CMI) award, to be presented
(at the discretion of the USAMO graders) for a solution of outstanding
elegance, and carrying a $1000 cash prize. The CMI award was presented
to Po-Ru Loh (Madison, WI; brother of Po-Shen Loh) for his solution to
USAMO Problem 2.
Members of the USA team at the 1999 IMO (Bucharest, Romania) were

Reid Barton, Gabriel Carroll, Lawrence Detlor, Po-Shen Loh, Paul Valiant,
and Melanie Wood. Titu Andreescu (Director of the American Mathematics
Competitions) and Kiran Kedlaya (Massachusetts Institute of Technology)
served as team leader and deputy leader, respectively. The team was also
accompanied by Walter Mientka (University of Nebraska, Lincoln), who
served as secretary to the IMO Advisory Board and as the official observer
of the team leader.
At the 1999 IMO, gold medals were awarded to students scoring between

28 and 39 points, silver medals to students scoring between 19 and 27
points, and bronze medals to students scoring between 12 and 18 points.
Barton’s 34 tied for 13th. The team’s individual performances were as
follows:

Barton GOLD Medallist
Carroll SILVER Medallist
Detlor BRONZE Medallist
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P.-S. Loh SILVER Medallist
Valiant GOLD Medallist
Wood SILVER Medallist

In terms of total score, the highest ranking of the 81 participating teams
were as follows:

China 182 Korea 164
Russia 182 Iran 159
Vietnam 177 Taiwan 153
Romania 173 USA 150
Bulgaria 170 Hungary 147
Belarus 167 Ukraine 136

The 1999 USAMO was prepared by Titu Andreescu (Chair), Zuming
Feng, Kiran Kedlaya, Alexander Soifer and Zvezdelina Stankova. The
MOSP was held at the University of Nebraska-Lincoln. Titu Andreescu
(Director), Zuming Feng, Kiran Kedlaya, and Zvezdelina Stankova served
as instructors, assisted by Andrei Gnepp and Daniel Stronger.

6 1999–2003 Cumulative IMO Results
In terms of total scores (out of a maximum of 1260 points for the last five
years), the highest ranking of the participating IMO teams is as follows:

China 1048 Hungary 676
Russia 964 India 658
Bulgaria 918 Japan 658
USA 889 Ukraine 656
Korea 841 Turkey 624
Vietnam 823 Germany 603
Romania 741 Kazakhstan 583
Taiwan 733 Israel 563
Belarus 713 Canada 547
Iran 680 Australia 544

More and more countries now value the crucial role of meaningful
problem solving in mathematics education. The competition is getting
tougher and tougher. A top ten finish is no longer a given for the traditional
powerhouses.
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